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* Abstract

0 This work examxines the. angular correlation of speckle patterns produced by the
cohierent illumination of random rough surfaces. Speckle p~atterns are produced
when coherent light is scattered by a rough surface or other random medium. As
the angle of illumination changes, the speckle pattern changes at a. rat~e determined
by geometry and by the details of the Scatter'ing process. It. is this angular change

0 that is studied in this thesis by mneans of the correlation coeflicient.

5 ~Experimenta~l studies are made of the angular change of Speckle pat terus from low
anld high sloped Gaussian random rough surfaces. They- are i lliuminat ed withI a
linearly polarisedl laser b am, and the correlation coefficient of speckle patterns
observed wvithl a CCLD camera then being determined by computational analysis.

*The I~lirclilioff aJ)prloXimaltioli is ap)1 lied to thec lie] lmholtz- l\*irchlltoff iiii egr-al to 01)1am
a two-(lilensional analytical solut~ion for the correlation produced by a lowv slope,

5sinlgle scattering. Gaussian Sur-face. Thle results are compared wvith the experimental
mi'eaRsurTemets.

A Simple statistical examination of Gaussian random rough surfaces is made. this
shows that thle Jlirclhloff approximation is still valid even for surfaces which exhibit
mlultiple scatt eriimg. Thme Xiirclmoff approximation is used t~o derive anl exlpression for

thme scat tered( light from a high sloped, mnultiply scattering. Surface. This required
Compu)it~ational Implementation - anl advantage being that. surface shaidinmg call be

0 ~account~ed for. A very fast compumtational me1thod for det erlm li nig sli aded ar-eas Onl
a. surfa e is prese'-;nteCd. lPolarisat ion changes in the scattered light are cat~eredl for.

A concep)tual model of the pr~ocesses inv'olved in multiple scattering is de-veloped,
successfully explaining various features of observed rerui It.

S7
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Chapter 1

Introduction

1.1 Introduction and Literature Review

Interest in light scattering from random media has undergone a. noticeable reviva.1

within the last decade. Although some of this renewed interest. may be attributal)Ie

to the more recent computer technology, enabling solutions to various scattering

Jproblems t.o be d(et ermined numerically, the subject has generaled interest in l he

mcdical field. in this area t lie voltni l scattering and absorption properties of a pa-

tient may potentially give information about int.erna.l processes wit hout the necessity

of large and expensive equipment or the use of harmful radiation.

The driving forces beliil t-he study of scattering from random rough surfaces are its

potential as a non-destructive or remote probe for measuring t.he stai isti.cal proper-

ties of rough surfaces. and the inescapable effect that the inhierent randomness in all

surfaces lhas onl everyday scattering al)l)lications. Radar falls into this last category,

and miny be regarded as a. scaled ti) light scattering problem; similar results may be

obtained using light iii a la1Joratory as would ]be gathered fromii a nl-ore exei :,sive,

2T
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28 CHAPTER 1. INTRODUCTION

less controllable, radar set up.

1.1.1 Theoretical Models

This section will present some of the theoretical models which exist for determining

the problem of light scattering from random rough surfaces. It aims to give an

introduction to some of the methods not used within this work.

Approximate theories exist for very small height deviations across the surface (such

as perturbation theory) and for surfaces which have sufficiently low gradients such

that they may be considered as single scattering (Beckmann theory or single scat-

ter/first order ,irchhoff approximation). Other methods ai.empt to precdict the

effects of multiple scattering and include the effects of surface shadowing. Compu-

tational methods of solvring the integral equations also exist which avoid the necessity

of approximations. Most of the theories discussed below may be found in more depth

in the book by Ogilvy[']. -

Perturbation Theory •

Perturbation theory caii be used for slightly rough surfaces which deviate from a

flat plane by only a sinall aimloumit.

The field on a surface li= h(x,y) may be written as

E=E E (1.1) •

Where the :;ubscrilpts I all .5 re-presenlt the ilicident anll scat-tered fields respwct ively.

E i.• a vector q(uant.ity of a itrticular polarisatioi. 0
0g



1.1. INTRODUCTION AND LITERATURE REVIEW 29

* The perturbation theory assumes that the scattered field may be written as a series:

E. = E~o + E., + E2 +-.. (1.2)

where the numerals represent the different orders.

Assuming Ei and E, to be functions of h, taking a Taylor expansion in terms of h,

- terms of the same order in h may be equated after applying the Dirichliet boundary

condition, namely that the field a.t the surface is zero

SEIZ=h = 0 (1.3)

0 at the mean IIplane ( = 0). Applying the Dirichlet boundary condition when the

surface heights are much smaller than a wavelength, the zeroth order term in the

perturbatioli series (the field scattered from a flat plane) is found:

*Eolz-o = -Ei=o (1.4)

and the firs. order perturbation term (representing the effects of the deviations inl

the surface from, a smooth plane) is

E., I -= (Ej 1 O +cE.•o "•=* FsiI-o =-, (D -OF,: 0 +77=o (1.5)

*The 'I'lcelholtz-liirchthioff integral (discussed in chapter two):

E fIsE INS
0E, -(].(i)-

iliay now be used. %i\t h e(qiatioln (1.5) as a boundary coddit ion, to give thc scattered

* field:

S9= 1, E + 0 jIS (1.7)

Sa
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30 CHAPTER 1. INTRODUCTION

where S is the mean surface plane and ?k is the half space Green's function; all other 0
notation is as previously defined.

A similar method may be used to obtain the result for the Neumann boundary

condition,

Oil•liZo-0 (1.8)

This may be used when the surface gradients are much less than one, and gives

j Oh (9,o + aE.so) + Oh (2E, + ýEo) -? + :2)z., a ax 0x Oy 0, O\ M. + -' ) ,,+-•- :+•7: ]j 1•(.
(1.9)

It is possible, again with a similar method, to obtain the second order perturbation-

of the scattered field. The original Taylor expansion must be taken out to second 0

order (terms in hV) to obtain the new ,boundary condition to apply to the 1 lelnholtz-

Kirchhoff integral. 0

The accuracy of perturbation theory has been studied by many authors (cf. section 0
3.1.3 of rcferenlce [1] for a detailed review), the generally accepted range of validity

being ka K< I where a is the rins height of the surface, 7 the correlation length and

k the wavenumber 1. One recent work compares perturbative calculations with

"exact nllm1elrical result.s". (as tuse(l in references [12], [3] and [.1]) and t hose oAt.ailned

by using the h"irchljioff aplprOxiniation[N. It finds that for k-r > I (where 7 is ihe

correlation length of the surface), the fourth order perturbati\:e expansion is better

than the second order one, the latter being accurate when the toial incolierently

scattered energy is less tha i about 9% of the incident energy. For the fourth order

expansion, the theory was lou101d to be accurate \tv hici the tota i iI co(01here tVly scat t (led

energy is less t.l ai arouiid TW9X of the ilicident enlergy. If Ar < 1, it was lo fuid thIat

I0
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the perturbative series is net convergent, and the second order expansion gives better

results than the fourth.

* ~Surfaces considered in this thesis have an rms roughness, ka >~ 1, hence the pertur-

* ~bation approximation wvill be of little value.

0Extinictioni Theoremr

0 The extinction theorem derives its name from the use of the -condition tha-t'the field

0 within a scattering surface imust cancel the incident. field. For finite surfaces, this

condition is ap~proximated to include all space b)elow file surface p~lanle. ,is also

0 knowvn as thie null-field method and the extended boundary condition method.

Starting wvit~h the usuial Hlelmhlolt~z-liiirchhoff integral (eqjuat~ion (1.6)) for the scat-

tered field, and writing the incident field such tha~t thc field below the surface is zero

I .e. Ulit' incident. field cancels out the scattered field (E, + E, = 0), th~en

*i _. j 2lidS (1.10)

Equation (1.10) may be solved for E, w~hicil mlay thien be suibstitulted int~o equation

(1.6) t~o give the scat~tcied field. Inl practice it is usuially necessary to find anl ap-

pro~xinat~e Solution to equation (1.10), by) us3ing anl expansion similar to that us-ed

inl lpcrtilirbat~ioll technliques. Numeirical simulatioi, avoids this necessity by using anl

iterative I 2cliniiiqii to ob~tain an e-Nact esl.(S1It[3] nl ,l11.

0 N\\'hi iit. the eXt iiict ionl thieoreCiii provides anl exact soln tionl ill prinIciple, the 'icat~tee~lv

0 ~inteiisity cain ot. l)C. writt~en a,; a bingle closed form expanlsionl, and therefore it Is of

0 ~~littfle v'alue ill providlin g !mpJport. for a phiysical picture of I iglit scattIerinhg.
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Kirchhoff Theory

Kirchhoff theory is used extensively in later chapters of this thesis and will not be 0
dealt with in this section. The single scattering Beckmann theory is discussed in 0
chapter four, and the double scattering technique used by Bruce[61[lsH8] and othersE9][1Oli][q

is explained in chapter five.

One technique increasingly used starts with the extinction theorem and, by itlraating •

the surface field derived n times, gives increasing terms in a series of which the n = 0 •

term is the single scatter ,irchhoff solution, larger n giving terms representing

double and higher order scattering terms' 2 1113i. Computational techniqucs must be 0

used to solve a large matrix equation. 0

1.1.2 Mean Scattered Intensity

Research into light, scat tcriiig from random rough surfaces has remained fairly act ive

sinlce thf lil uprting by Nlelidez and O'l)onnel['lfi(")P of 'enhanced backscatter'. This •

work was stimulated by the observation of a similar effect in volume scattring l.

The effect itself has been lnown of for years in the astronomical field, referred to as

the 'opposition effect' [aMntgomery!''] and refs. therein]. The name came from the

fact that it was noticed in scattering from visible bodies in the solar system %,hen

they and the sun were in opposition, i.e., on op)posite sides of the earth. Tle signif- 0
icance of Mendlez and O'Donnell's work was that well characterised random rough

surfaces were used, following the inethod of Gray1
18] (see chapter three), enablillng

confident coniparisoons with comlput ational results and tie existing aplproximmate an-

alytical theories.
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It was found that Beckmann tbeory[191 agreed well with experimental results from a

low slope surface for small angles of incidence. A study of two steeper slope surfaces

was undertaken, showing the enhanced backscatter phenoi;ienon, and a possible

explanation for the backscattering process was outlined - the enhancement being

due to constructive interference of equal and opposite multiply scattering paths.

Experiments have been conducted comparing low sloped surfaces t.o theory[20) and

various others examine the scattering characteristics of known steel) slope surfaces

which display the enhanced backscattering phenomenon. Included in these is a com-

parison of dielectric and perfectly conducting (gold) surfaces with identical profiles[21]

- epoxy resin copies of the originally fabricated gold coated surface were made via

a silicone gel mould. A gold coated reproduction was compared experimentally with

the master and t lhe results confirm that the technique faithfully copies the original.

Significant Cnhallced backscatt.ering (noticed in the gold surface) was not observed

experimentally in the dielectric case. Results of a numerical calculation were coin-

pared with the experimental dielectric scattering results showing broad agreement.

Results from various one- and two-dlimensional surfaces have also been presented for
different. ",ve\-¢,le gtl s of illuiniat.ionl[ 22 a,,d a comparison of result s froi n statistically

similar one- and two-dimensional surfaces has been madel2"I showing results which

are similar in as far as they may be compared.

In reference [23] the Stokes' parameters of the average scattered light are utilised

t.o present experi'liental data of the l)olarised and unpolarised cOlpl)oneats. The

backscat.t•er peak was foumld only in the imqpolarised comnlpolwilt, and is therefore

believed to be a product of inultille scattering. Numerical calct'l ation results were
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compared favourably with experimental results from one-dimensional surfaces.

More extensive studies have since been made of the polarisations of scattered fields

and the Stokes' parameters. Four unique elements were found in the Mueller matrix

of a one-dimensional surface, all of which were shown to be significant in scattering

from such a surface which produces enhanced backscattering [24]. The complete

Mueller matrix for a one dimensional perfectly conducting random rough surface

has beeln numerically and experimentally found[cl• for all observed angles and for a

number of different angles of incidence -- the results were generally similar to each

other.

A complete Mueller mnatrix has been nMtnerically and exl)erimentally calculated for

a gold and dielectric one dimensional surface['). Agreement bet-ween numerical and

experimental results was good for the dielectric case, but differed slightly in the case

of the gold surface. The difference was shown to be in the 7n3,1 matrix term (mapping

linearly polarised incideiit light to circularly polarised scattered light), anid believed

to be due to a difference in the reflection coeflicients of the surface and those used

in the calculation. The Stokes' parameters arc examined and utilised as in reference

[23] to show the polarised and unpolarisod scatt.ering components.

A presentation was given of numerical calculation results of the angular contribution

in the intensity of the diff i•"e co01)po0InC. of p-polariscd light scattered from a ranudom

grating ruled on p]ienleabltl and implenetrable dielectric mnedia'1 I. It. ib foumd that.

a metallic (silver) surface gives similar results to a perfectly conducting one. This

result has a larg,' in pact oin the imiivierical study of light scatth'rilng as it. is much 0

sill)pler to implemenlt. a it('CIt ly col dlucti i g surface tdhan a mnetallIc one.
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Multiple scattering and shadowing extensions to the simple Kirchhoff theory have

been implemented['7][8][s (see chapter five) - numerical resuits for single and double

scatter components of the Kichhoff theory are presented, for gold and dielectric

one dimensional surfaces, and compared favourably with experiment. Experimental

results have also been compared to the double scatter Kirchhoff theory for a gold

and a dielectric surface which have identical height profiles P25]. Various wavelengths

were used. Generally, the double scatter Kirchhoff theory was found to be in good

agreement with experimental results for angles of incidence of less than sixty degrees.

* The 'exact' method of the iterative solution of the extinction fheoremnil has been

used in a Monte-Carlo numerical calculation121 in conjunction with the single scatter

•Kirclihoff tleory for a. range of surface statistics, to define the limits of the single

scatter lKirchhoff approximation. The results presented do not define the limits of

• where the Jirchhoff approximation can be applied, 1lut where the single scattering

theory based upon the approxinmation can be expected to succeed.

Other work outside tlhe scope of correlation measurements, but. not. so closely related

• to the work to be presented inl the following chapters, includes joint experimental

and theoretical studies of the backscattering from and transmission through dielec-

tric and thin filn ranidom rough surfaces[2`][ 2'7. Speckle techniques hoave also been
(leve].gl)cl[2 - speckle contrast. Ineasnren,ent.s[21 J[a"I are amongst. the, many different

II'etl hiods discuss('(1.
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1.1.3 Correlation Studies
0

Correlation studies were first carried out in the early to mid-seventies. However,

at this time the interest in multiply scattering surfaces had not developed and all

works dealt with low slope surfaces.

Pedersen[") discussed speckle correlation, giving a theoretical explanation of var-

ious results reported prior to his study. Most of his interest, however, lay w'ith

polychromatic specklel32l and his work is not relevant to this thesis.

The work by LUger and Perrin to determine surface roughness via a correlation 0

technique is directly relevant to this work. By exposing a photograplhic plate to 0

speckle produced by a rough surface at twvo angles of incidence, Young's fringes

could be observed in the Fomier plane when the processed plate was placed in a. 0

converging bearnmaa]. The contrast of the fringes was mathematically related to the 0
surface roughness, starting witli the general Beckmann solution for the scattI ered•

field, but then working in ti e Fourier doinain.

In a later paper[31] a more general derivation of the fir'hge contrast from angular

correlations was reported. This was again based on the single scattering Beckinain•

theory, but took a real space ap)proach to the problem. It is the basis of the derivation

to follow in chapter four.

More recently, Ohlidal3•1 compared the equivalent of Ltger and Perrin's met hod

(which uses the Franuhiofer approximation) to results obtained using the Fresnel

approximation. No coinpari.son witli experimental neasurenments was made. hut ani

analysis of when each inet llod should apply is l)resent(ed.

-- I I ID I0
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The most recent studies in this area' have been performed by Michel et. al. and

Knotts et al. Michel et al.36J present numerical results for the. angular correlations

of scattered amplitudes from a one dimensional surface and analyse the results into

those attrib~utab~le to single and double scattering KnlottS et al.E 37] offer experimental

results for angular correlations obt~ained from a one-dim-enisionlal surface and compare

with numierical results. A discussion as to the cause of various features observable

in the results is given.

The Memrory Effect

The memory effect. was inamed by Feng et al.[")1 for situations of volume scattering

(scattering from a mnedia Iin which the light may t ravel, e.g., paint or iniilk). They

showv various Cenlementsconitributing t~o the correlation function, and show that certain

of thiese are large whien the -moinent ui transfer of the incident beais, ecjuai the

tranlsmlitt~ed onles". I.e.. t he Change inl the wave vectors uponl Sca i er-ing is the Samle

inl bot Ii case., lbeiilg Corrl'(*ated, .Aq, = Aq 2. Aq is defined as q:- ql,, Ih li (iflerelice

inl the (t ranlsverse) wave vectors of the incident and scattered light..

Applying thiis to inp~i ufc ctteigcreainthe izi-ieinorv e(ffec-t. Coni(itioni

holds (see ('liapt er four) 'vlien

SillO1 - sin 0, = Sill 1  sill 1.1

wvhere the sulbscrilpts I and "; represenit. the inlcidelit. and scalt.c~red anugles resjpect~ively,

O binClg ulSedI to Obt.Aiiu oneC Sl)eclle piltterni and q lbeing uised to obt ain thet Second.

Thl~is cond(it ion was used by Leger anid Perri ii11"11 twelve yearifs earlll iv ill thleir work
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described above, although it was expressed in a different form: 0

cos 060 = cos O1 6€ (1.12) 0

Equation (1.11) may be reconciled to equation (1.12) by noting that 0, and •

have been replaced by 0, + 60 and Oj + 60 respectively and by applying a simple

trigonometric transform. As they were only dealing with small changes in 60 and

bq, terms of order 602 and 60" can be removed.

Pdc&1se,13 ] also note(( that. it, was desirable to have the condition satisfied, and •

equation (1.11) has been used in the work reported bys Micliel et al.[P].

Nieto-V\'esperinas and Saiichicz- G(il[ 1 have studied the ineniory cffect in relation to Ask

surface scattering, bult they also notice ain "elhianced long range correlation" o)-

servable when•

Sill 0, + sin i0 = ±(sin 'i + sin ll) (1.13)

The origin of thi.s i. believed to be lie saine as for the peak observed iii enhanced .

backscatt ering.

1.2 Synopsis

0
The remaining sectionis of this chapter consist of a stat ement of tile original work

undertaken and a description of tlle scattering geometry to be used t.li iouglihot 1 .lt

work.

The second cliaptcr contains genral theoretical notions, including stat-istical cOi-- 0
cepts such as randonm varial des and processes. It also contai us a derivation of 0
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the I leliviol tz- Kirchihoff integral and somec other concept8 frau1 elect rom agnetismn,

namely descriptions of reflection coefficients anud polarisation.

* Chapter three contains all of the experimental methods iiscd; these include mannu-

* facturing and classifying random rough surfaces and the procedure used to calculate

the correlation 'oelihcienit from digitisedi images of speckle pat-ternis.

0 An analytical expression for the correlations expected fronm a. low-sloped, single

Scattering uRilface is dlerivedl from the Ile]icimolt z-l\i rchhoff integral, inl chapter four,

0 ~~~by applviuig the Ni rchhofT appro.xi mat lon to it.. ExpeCrimtentta] resuilts for such a

su-ceaecoprd with tilte tInoretikal result Ind (lisCI''.5ecd.

Th'le fifth chapter ctemeds tile ilý.irchhjofr result. to Inucludle tile (louble scat t~er terinn.

The equation is no longer analytically soluble and is imurplemnuited Coliu])t it'Iionally.

Polarisat io-. ch-ii ges are( Considered, and all algorithml for rapidly (let en iniing 'lilies

of sight, oil a Surface is premsented. It. wvas r'ý,Cessary to develop t hiis algori t-1l1 nInI order

to calcuulatec p01 u.- to-jpoint. shiadinig inl dhe fastest possib~le timoe; withioult. it a tw\\o-

dhimenisionala coil upu t ational pr-obleml of thtis niature wvould 110t. he prarltical. Results

for a hiigli-slopeu. multiple scat-tering surface are Compared wit il thle computational

5 ~~~~The ha,;,, CI apt er couusid(ers, andl att~emiuas t~o e.lplaini, the results obt ainuedl. A possi-

5 W~be iliechlaiisiui to describe the observed single and double coumpoienits- of multiply

scatutcmi ug) surfaces Is lpmeselit ed.
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1.3 Statement of Originality 0

There is not a great deal of original content within chapters one, two and three -

these are mainly concerned with introducing some background information and the 0

concepts and techniques available for use within this thesis.

Chapters four and five contain new experimental results for the intensity correlation

of speckle patterns produced by' a method described in chapter three. In chapter

four an existing analytical Cxl)ression is extended to deal with two-dimensional in-

tensity correlations and then numerically averaged to enable a comparison with the

experimenta.l results. In chapter five, a. double scatter numerical simulation based

on the Kirchhoff approximation is extended to cope with two dimensional surfaces.

A tiew fast technique for calculating the shadows cast. on the surface by its own

fluctuations is presetecd.

Chapter s;x promote(s a sifl])l" coiiceit ntal nIlodel which can successfully explaill t he

existence o'" and to sonic extent predict the positions of, various features lnoted in 0
the double scatter correlation results and in double scatter average intensity results.

1.4 Correlation Geometry -

Consider a plane mirror which caii rotate about an axis which lies in the plane of

the mirror. If an observer looks in the direction of the mirror, he w'ill see ani inage

of what is around the specular direction of observation. Now if the mirror is rotated

about the axis, an( the observer ijoves around the same axis until he call sec thl

0 --
sa e ce easl,,or, l:', lw] w~lb vcroa~c lw(', .' mc a h( lll''0'
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The geometrical arrangement to be used for investigating the angular correlation of

speckle patterns will be conducted by always viewing speckle pal erns in the specular

direction to the incident illumination (see figure 1.1). The argul, nt presented above

will be examined mathematically, for the case of a Gaussian random rough surface,

later in chaptei four.

0•
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" ~Ch apter 2

• Mathematical Concepts

* 2.1 Statistics

* IIn this section, various statistical notions and formulac, which will be required later,

will be presented. Unless otherwise stated, all variables will bc real and continuous.

*A The bulk of the material below can be found in textbooks (e.g., Pl)apoulis[l°] or

S Goodman("l1 ).

* 2.1.1 Probability
S

* Probability may be (defined in three ways, but generally all of the (lefiiitions are

9 required to formu a coi lpicte picture, each d(finitioi( considcred in isolatlion lacking

sometlihing which would cnable it to stand on its own. In fact, tlie mrot mathe-

mitalc;Lly ,'igoroms d(efinition of probability (the axioinittic approa ch) is inlcapable of

Sassigning a 111i nierical probalbility to any event other than the cerI ain one, so it, ;111d

5 tl reams of theory base,..d upon! it, would be usclss in the rcal wvoilI witlihut the

other, 'dirt-ir', reli] ive ficquenicy and cla.;.ici. (a priori) a)Jrwicles.

* 4:3
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The definitions of probability are:

"* the axiomatic definition, which assigns a number to an event, the number

restricted to be positive, the probability of the certain event being one, and

the prolbability of two mutually exclusive events being defined as the sum of

the two individual p~rob~abl~ities;0

"* thc relativc freqiiency definition, which defines proba~bility' of an event as the

fraction of the number of timies the event occurs over the number of exper-

jilents performled as thle num11ber of experimlenlt-s performed tends to infinlity;

and

"* the classical (a p)i~ori) d(fitiliofl, which counts the possible outcomies and

defines the p)robab~ility as the fraction of the number of outcomies :In whlich the

event is expected1 t~o occur inl a single experiment over the total nlimllber of

)os~siblel olt-col-e~s.

Tlic most, useful single (lefinit lion of probability is a modified form of tile axiomiatic

approach. Thie prolbalili ly is it num11ber associated with anl outcomce of a randoml

exp~eriment. (aln eXI)Crililent where the outcomle is not previously determinled), this

nim-ber being a linear recpresent-ationl of the likelihood that the associatedl ouitcomle

wvill be Ob)served, orI Ilight. beC CXp ected to be observed. 1 lie p~rolbabl~ity is 1 for anl

outcom e wh ichi will dcfi lelylo.13 ha ppcii, 0 for anl out-come whliiclh could njever I a ppenl

This appiroa ch coli bi lies thec in (I1"idi(ual (lefi iiition s and incor-porate's everythiing nlec-

C5Sal1Y to dlevclol aitid Use, prbl)btl))lt theIory. It ( al be easily shown that. si mce 0wi(

probability is Ii iieail, the I( JbUl~a~ it5 of' occurreiic( of anly one of son ie huh 11ahllYex



:;1svse otcomesr isJthe sumn of their individual probabilities, thus fulfilling the ls

axioati coditon.Moreover, the relative frequency and classical approaches have

bot ben icororaedsuch that something which hiappei, zor might be expected

to happen, half of the time will have a probability of 0.5; hence, it is possible to as-

sign a number to a~n outcomne which was not previously possible under the axiomatic

definition.

This definition is presented as an aid to the understanding of probability theory.

2.1.2 Random Variables

Definitioni

Th~le definition) of a rand~oin variab~le is based onl the underly3ing random experiment

and tile "evenlts or pos~sible (mnumrical) outcomes of this experimient.. A random

variable is ill] possible outIcomles of a random experimient associated with their prob1-

abilities. A discrete example nlay clarify this: if thle experliment. is throwing two six

Sidled(ldice an 1`11 fiding their. suml, then the p)ossible Outcomes, are initegers betweenl

2 andc 12 each having differing probabilities of occurring -- thle value 2 has a prob-

albility of Occurrence of 1/36 (thle (lice Showing 1 + 1), whereas thle value 7 has a

1)robabilit.y of occuirrence of 1/6 (tile dlice showing I +~ 6,2 + 5,3 + M, + 3,5 +- 2

or 6 + I ). 'Ilime values" of, this dis.crecte ia ndolom var-iahble will occurl wi th time samle

frequemmlC\iva the out conlies of' the experimilemit.,

S M
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Probability Distribution and Density Functions

A probability distribution function, Fx(x), is a function associated with a random

variable, X, and which gives the probability that an outcome will happen by x;

i.e., the probability that an outcome will be smaller than x, is Fx(xi). Note that

Fx(-oo) = 0 and Fx(o) = 1.

A probability density function, Px(x), also associated with a random variable, X,

assigns a probability to every possible outcome x; i.e., the probability of the outcome

xi occurring is P,'(xi). Strictly speaking, the probability density function gives the

probability P" (xj)d.r that an outcome is between x, and x1 +dx,. A (liscrete random

variable may be considered as having a prol)ability density function consisting of a

series of delta functions.

The probability density function is derived from the probability disti-ibution func-

tion, where possible, bY\
I F.X ( x)

1h(x) - dx (2.1)

The inverse relation

17x) = J P.x"(ii) dii ((2.2)

also exists.

Expected Value

Th exCpected value (or recan or statistical average) of the random variable X is

(lefilne(l as thlie :Suil of all lie p)ossill out comes iult11iplied by their iidividual prob-
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abilities:

S=E{X} = j xPx(x)dx (2.3)

where Px is the probability density function. When x is a possible value of the

random variable X, then Px(x) is its probability. The mean is a first order moment.

of a random variable, as will be seen below, but has been dealt with first as it is a

concept with which most. people are familiar and serves to introduce the notation.

Moments of a Random Variable

E The moments of a randoin variable are defined as

mk = E{-Xk) = k'kpX(x)dx (2.4)

Here, mo = 1 and mi is the mean, q. Generally of more interest are the central

moments, i.e., the moments of a random variable after it has been shifted to the

centre of its range so that. the expected value is zero:

Ilk = E{(X - 7)1k} = -(2.5)

Ilere, /o = 1, It = 0 and 1P:2 is the variance, a o, a being the standlard deviation.

The more familiar forim of the variance of a (discrete) list, of A' numlbers

o2= (" 2 ) ) (2.6)

can be obta ictd from a relat-ionship bletXween the 1lnOlinentr.s and central moments

(found by a binionial expansion of the (x - 71)' term in equation (2.5)),

P2 771 2 (2.7)

I=
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and by realising that in this case of equally weighted values,

-,k = F , (2.8)

Joint Moments of Two Random Variables

The joint moments of two randoin variables X and Y are given by

k, = E{Xky"'} =kJJx y'Pxy(x,y)dxdy (2.9)

The expected value of a function of two random variables is given, more generally,

by
00 40

E{f(X, V")} ] f(x, y)PxRy(x, y)da'dy (2.10)
c'J - C.

The order of the rfoments is defined as k + 1 (cf. equation (2.9)), so, for example,

the first order joint momci~t.s of two random variables X and Y, are m10 = 7,- and

71701 =- Iv.

Px.y(x, y) is the joint, probability density function of X and Y. Generally, this must

be determined b)y, finding the joint, distribution function Fxl'(x,y) (the probability

that X is smaller than x and Y is smaller than y) and differentiating with respect.

to both x and y. Special cases of interest are:

1. Two independent random variables

Px'Y. (.,. Y)= .ý-(0.)JPI(y) (2.11)

and 0

40
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2. Two Gaussianly distributed random variables, X and Y, with means of 17, and

Svariances of o,,2 and a and a correlation coefficient, Cx':

Q 1
Px,)y(x,y) =- Io -C x (2.12)

* I( 1  [(X -7)2 _
2 CXy(X - .) (y-)v+ (y 7e p 2(1 _ C2.. 0) [ a 'cr•, Or a 2

It can be seen froni the above that two uncorrelated Gaussian variables are also

independent, i.e., if C.y = 0 then equation (2.12) takes on the form of equation

* (2.11).

The joint central moments of two random variables are defined by

* 11 =I EI{(X _ 71.)k(. ,i/)1 } = / (: - ?l•:)k( -- h)'Px)'(', y)dxdy (2.13)

The second order central moments are of interest here. These are /120 -" P02 =y

and PII, which is the covariance of X and Y", given by

:l = EL(. - 71x)()" - 71,)} = E{XY} - E{XJE{Y) (2.14)

Finally, the correlation coefficient of X and Y' is defined as* { (X - ,•.)( Y - ,j,)} I•,1,, `/,,,

Cx- _ E-- f -- (2.15)
* ,E{(x -,- 7 ) 2)E{( -- ,Y ,)2} V/12,•7 •.j-2 U, --

The correlation coefficient gives a measure of the similarity of the two random vari-

ables. It will have a value of 1 when the random variables are identical (when

X = Y); a valhte of 0 when there are no similarities between one random 'variable

and tile other; and a value of -1 if one random variable is thie opposite of the ot her

(when .X'-)
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Central Limit Theorem

0
Another principle to be applied later is the central limit theorem; this states that the

joint probability density function of a sum of independent random variables tends 0
towards a Gaussian distribution as the number of random variables tends to infinity.

Following Goodman[41]: if Ui = U1, U2 ". UN are N independent random variables

with means of qi and standard deviations of ai, then the random variable Z, defined

as

- E , (2.16)
i=1 (7i

will have a p)robability density function of the form

Pz() 22 (2.17)V/7'27r

as N tends to infinity. Not. that this does not depend on the individual probability 0

density functions of U,.

The central limit theorem is still al)l)licable with varying degrees of validity for finiite

N.

2.1.3 Random Processes 0

Definition •

The definition of a randomn 1rocess is similar to that of a randon var'iable, tle differ- •

ence being that. where a rallidomi variable reI)rcsents ,blu8 with certain probabilit.ies, 0

a -alradomll process l'i)rc'elit.S fUioc/?i$s with certain plrobabilities. The defiuiiliomi is •

again based on all undeirlying randoml experiment amnd the possible outconieS of this

0i
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* experiment, but here the outcomes are functions. A random process is all possi-

be output functions of a random experiment associated with their probabl!ities of

* occurring.

The functions need not be previously defined; an observation of a random process

(e.g., noise in a systemn with respect to time), will in general yield one sample

function, x(t). That sample function is now known, but it may not be possible

to find it again - another experimental observation will generally give a different

sample funct-ion.

It. should be noted that a random l)process A(1), as well as being a function x(t)

associated with each event, is also a random variable Ar for each possible (fixed) t.

The probability density function of a random process is now also a function of the

salne parameters as thie random process; for example, if the random process is A(p, q)

then the (first order) probability density function is PT'.(.x;p, q). The moments and

central momemts can be calcul ated l using this quantity, aimd will also be functions of

7) aid q.

Stationarity and Ergodicity

A random process is said to be stationary ia the strict sense if its statistics are

independceit of origin; i.e., if X(t) and X(t + s) have the same statistics for any s.

This inl)~ies that first. order statistics are const-ant, and second order statistics only

(lel)pend on the difference, s. Reference to si ationary quantities hat in this work

will Imean st ri fly slat iommarv ones.

S
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A random process is ergodic if an average over one sample function (a temporal or

spatial average in physical systems) is identical to the expected value of the process

for fixed parameters (its ensemble average). This means that the statistics of a

random process X(t) can be determined by either one function x(f) or by one of the

random variables X at fixed t. Any ergodic process is also stationa,-y. •

Moments of a Random Process

The meaii of a random process V(1) for fixed i is the expected value of one instance

of tha.t random process,

?I(/) = E{X(I)} (2.IS)

Notice that. it. is a. function of f. 0

Other quantities of ilnterest arc the second order moment E{.'(/)2), amid 0hwe smcomid

order central ImOmlent or 0 am vanr ' ce

ar) {-I ( t() - 71(t ))21} (2. 19,))•

The joint moments of t wo i nstamces of a random process N((i) and N(t2) are from 0

equation (2.9),

?Mk'I(f 1,12) = j{-A. (t3 )k-\(t2)'1 (2.20)

77111(tl,"2) is the aut.o('orlelaioll fumtion, I?- X ('I, 12), of .\(!).

Tlhe joint. ce-ntral 1uomicmits of 'wo iinstances of a random process X(t,) and '(i2), •

are froml( e(ilt ion (2.13),

,.I(,. ) = El( (t, ) - 7,(1I))k(X(t2 ) - ,1(td ))'j (2.21)
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1111(1, t2) is tle autocovariance of X(t),
6

* Equation (2.21) leads, following equation (2.15), to the correlation coefficient be-

* tween two instances of a random process X(ti) and X(t 2 ):

Cxx(1it 2) E{(X(t1 ) - ,7(t,))(X(t 2 ) - ,1(t2)) 1,11(t1,,t2) --22
) E{('(t1) -_ t(ti))2)E{(f X(t2) -_ 1(t 2 )) 2 1} o(t,)a(1) (2.22)0

0 2.1.4 Differentiation of a Random Process

Papoulisllsl, delives a few important relations for differentia.ling random processes.

First. the expected value of the derivative X'(t) of a random process X(t) is equal

0 to the derivative of the expected value of that process:*d _

E{.\-:ut)} = fEv(t)) (2.23)
tit

The aut ocorrclat ioil. 712. 1 = ra. of the derivative of the process is

•0 Xk,,(t ,1 2 ) = 1X_ N (2.24)

If . (t) is slatlmary, Then

'?x'x(t) \' (1t) Y. J>) (2.25)

jFinalh, hol(' that '.'iien i-- O, the two ranidomi variables are the same and R.x is

t.l(' sccolld Illo lllt. of N • i.e.,

•/:'{ [.X"()])I,-u = '.¥,.,(0) X-J . (0) (2.26)

2.2 Gaussian Random Rough Surfaces

C•a ussial; sunvacc.s will be considered here since an assumption of ( aussi an sta tis-

tics (as will be seell lt.er) cases a;Iilvtical calculat ioils, aild the sit rfaces call be

0
0• 'm ..
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manufactured physically and also created computationally. Here, a mathematical

description of a Gaussian surface is given and some of its properties analysed.

The Gaussian random rough surface shall be represented by a stationary random

process S(x, y) with a zero mean, E{S(x, y)} = 0. The probability density function

of the process (i.e., the height 1 ;strilution of the surface) is Gaussian in form with 0

standard deviation as: 0

s(s)- =-TA (2.27)

Also, a Gaussian correlation function shall be imposed on the surface: .

Css(t) (2.28)

i.e., the surface has a correlation length r.

Since the process has a zero lleall its autocorrelation is, from equation (2.22), 0

ss I 1 (I) = 5Cs(t) (2.29)

Later, the curvatullre (listri ]l!)ioq of tile surface will he required. Thiis Is not difficult•

to oltain, the distribution of the derivative of a Gaussian process be"hig Gaussian

itself (this follows from the fact that any linear combination of Gaussian iandom 0

variables --- such as differentiation - :-j itself Gaussian). All that is required is to •

find the standard deviat'ion of this new Gaussian distribution and the correlation 0

f',mction of the dcerivat-INvC.

Equation (2.25) gir the correlat;on function of tie derivative distribut-ion (fromi•

equation (2.29)) anud. again since the m'e-an is zero. equatioli (2.26), gives the varia 1ceC'

of the derivative of Ili surface. 0
"2_0
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The autoc(orrelation, therefore, of the first derivative of the surface height (the gra-

*dient), is
S2, ) 2• -.,L

Rs,s, (M 1- 1) er (2.30)

*The surface gradient has a Gaussian probability density function (cf. equation (2.27)

* with zero mean (by equation 2.23)) and standard deviation
0
* as, = = (2.31)

Applying this again, the autocorrelation of the second derivative of the surface height

(tile curvat-ure), is

-. 1- + • - 2a- (2.32)( 72 3T4} -

So, the curvature of a Gaussian random rough surface has a. zero mean Gaussian

distribution with a standard deviation of

- 2v/3asR."s"(O) 72 (2.33)

2.3 Convolution

Of interest, later will be the convolution of two functions 9(x,) and f(x), generally

expreJ'sed as h1(.)= .f(.x ) 0q(.x ) and written

h(.x) = .f(ux)q(" - it)d( J f(x - a)g( )d? (2.34)

The couvolution determines tile area of the product of the overlappilng re'gion of the

t.wNo fujictions for the \'a rious displacciielits x of onel \withI resp(ect to lie other.
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2.3.1 Convolution Theorem

0

'The convolution theorem states that if F(u) and G(u) are the Fourier transforms of

two functions f (x) and g(x), then the product of these two transforms is the Fourier

transform of the convolution:

h(a-) = f(x) ® g(x) (2.35) 0

II(u) = F(u)G(u) (2.36) i

The proof of this follows simply by taking a Fourier transform of b0th sides of

equation (2.34).

2.3.2 Extension of the Convolution Theorem to Correla-
tion Coefficients i

With reference to equation (2.22), if X(f) has a zero mean (71(t) = 0 for all t), then 0

the correlation coeflicieiit n iy he written:

E{.(1, ).. V(t 2 )} )

Now, if X(1) is stationary, i.e., ii t and 12 t + "., and moreover -irgodic W s1ch

that the expected value may be rewriltt.n ai a. tinie average over a Sample fuictioni,

the two being i(lelitical - t hell:

(x.(.,) = (2 fill.] Q).) + + (2.38) 0

The 1/27' terin divides. through, and the imm mit may l)e realised,

('NN() f (t)x( + .,)dt
j( (ý J :.(t)]2 dt1

0

0



0

2.4. ELECTROMA GNETISM 157

Finally, if x(t) is normalised such that the integral

S[x(t)] 2dt (2.39)
S

(sometimes referred to as the total energy of x(t)) is equal to 1, then tihe correlation

coefficient becomes*
Cxx(A) j0 x(t)x(t + s)dt (2.40)

Notice that this i., very similar to the convolution, equation (2.34). If, as with equa-

tion (2.34), Fourier transforrm.• are taken of both sides of the equation, a relation

similar to the convolution theorem should be expected. In fact, for two member func-

tions f(ar) and g(.) of a zero irean ergodic randoml process (normalised as required

above), with Fourier transforms F(u) and G(u), the tranisform of the correlation

coefficient. C(1u) is

C(u,) = T-(,u)(") (2.G1)

Where I'(v) is the complex conjugate of F(u).

Equation 2.Al wvill be used to cacullatc the colr-elation cocdficie.lt belween Itwo ex-

perimnental l wckle paliltcr1 i hagcs (see chapter thrie).

* 2.4 Electromagnetism

2.4.1 The Helnholtz-Kirchhoff Integral

0''hIC derivation below follows that. by B.orn and \Volff 2] alld H ecki )all I11"). 'T'he

time( dlepeIldelic. of v'ariouIs q(lia i.i tievs has bceli su])l)resscd as this work d(eals only

wit 1 ioiloc)r(llroilai ic light. and does not consid(r Speckle pat telis wvlIc'l chalig' with

).•l)('(, [ €to tile.

0
S
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The starting point Nvill be Green's second theorem,

JJEV1p- _ 'V 2 EdV - L _-OEd (2.42)0
ifvs On 491

0

where the operator 
n V( 

.3

aQ

On.

and E and 4P are solutions If t~o the wave e7quation0

(V5 2  +k 2)U .= A (2.4-1)

which exist III the volumle I/ surrounded b~y the surface S which hias an iinward

pointing poirntal wi. 'These Solutions s ean that. he vomie integral in equation

(2.42) nill be z(ru,22o

0 =0
E O,'-' d = 0. (2.431) 0 -

One of the solutions to eqiiutt~ion (2.44), E, is a component of the clectri(: field, and

thn other, 1/', siatisfics soilu e i onslitions for the geometrical propagation - in the ase

to be Conlside~red this i.s the spherical, or free space, 0-reei's funlction:

S)U(2.16)

0

The Standard tech ii llqu for infte grat~inig over a fu nctioni w i tl a singularity Is use, cd,0

rnamlely that of Surroliujdiiig t I wesin giibi iit~yby a sinall sphere with a radiius tenlding

to zero. the surface of t.his sphere Connecting wvith that of the maul bulk by all 0
piniitei orall t. cordor'. 'Ioinis means that the singularity (here for r = 0),

is ixcludcd from the vol ulic coiitai iid wi11111 the surface. Figurie 2.1 shows this

proess, i litegratiols of equation (2.45) should nown be perforfited ovecr fild, and (a-d

along the Corridor jo/ iti. ig tsme , bohlli oni the woay tr5c and froilg it, but the inicgrals 0
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contribution could possibly be made by it to the field at a point P within it.

2.4.2 Polarisation

Y0

Surfac

S (TE e- 0

_____Plane of Incidence

ligtire 2.2: P-olarisation state dlefinlitionls.

The p~olar'isa~tion state of radiation is (ei1dby the behaviour of the electric vect~or as

the field propagates through space. III the case w~here the electric vector is fixed w~itil

respect to position/ till'e- (i.e.. it (loes not rot ate abouit its dfirection of propagation),

the, field is said to be linearly polarised.

Figure 2.2 shows a ray ol liiiarls- polarised light, wave vector ki, striking a suriface.

The electric vector of th e i-av is dlefined Nvit-hi n the e -, e+ phlale; this planle is norm11al

to the wav'e vector. The p~laneP of incidence ini the figuire is defined by k, an~d the

normilal to the scatterinig lplaie, ini this case the ---axis. If the electric vector is

3lying along the e- dIirectioni, per)(1-(ldiclidla to the planle of incidence, tlie light is

S-I)OlariSedl; If it, IS lyi ilg a ~log t lie e+ , paraillel- t~ the ph ane Of incidence, it is p-

lpolarisedl. Aiiy other lii mar polarisat ion state nmay b~e exl)re(ss(-(l as a supciposition o
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of these two orthogonal states. The superscripts - and + are used to represent a

quantity applicable to the s- and p-polarisation states respectively.

2.4.3 Reflection Coefficients

The Fresnel reflection coefficients, TZ, are defined here as a multiplicative factor on

an incident wave, upon reflection from a flat plane, to oblta-in the reflected wave.

These reflection coefficients are polarisation dependent such that

i £:; =7-,.-E-

and may be complex.

They are expressed as[4"]:

+ cos Oi si! i 0 - cos 6sill q)
cos 0, sin Oi + cos Psin l
cos 0i sin 0 - sin 0, (OS (2.9)
cos 0, sin 0 + sin 0i cos d)

where Oi and o are the angle of inicidence and transmission respectively, as showil ill

fibar," 92.3 Thc.\ :ti,. dIirect ly apl.•licabh' at. a dielectric initerface.3il

For a metal surface, equations (2.,19) call still be applied if the "*transmission angle"

0 is redefined. In general. for a metal surface with Comlplex refract ive index n(l + 'K)

and light incident at all angle of 0, the values of sin 0 and cos P in equation (2.49)

are given 1)b"[12];

sin s sin Oi

7i(1 + t")

cos• = q( q(cos -y+ ±'Sin)')
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n2_ _ _ __ _ _ _ __ _ _ _

.. .0.....
... . .. ...... .0

Figure 2..3: '1he geometry used for defining the 1'resnlel reflection coefficients.

with q] and~ -) being, gi~iil by

\2S,2 /) 20 K2

712( + (1K 2 ) si22j + + K 2)2 sl

tan 2-y = -2;sn2,(2.50)
712(1 + tK2 )2 - (1 K2) Si1 2 0o,

For a perfect conduct or, the refflect ionl coefficients reduce to a verY simple fon-m:

R7 = -1(2.51)0

2.4.4 The Kirchhoff' Approximation0

TheIK~irchiloff(oPhsalOic)etodiatehiufosoigeqaon(.I)0

the I1lchnihiolt~z-KIir-chihmoff Hiii!gral. It. consislts of approximila t ing the ~sillface field ( the0

sunl of both theic Incident an (I scaitt red fields at the surface) and i ts iorni al de'ri vat ive0

at a point onl the rough surface to0 those givenl by the tangent. hlai ie at. that p)Ci t.0
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This means that the scattered field is simply the incidcnt field multiplied by the

0 reflection coefficient. The approximation may be written as

*i G +1-IZ)Ei

wher'e E, is the incident field, and Ej, is the field at the surface.

S Throughout this wvork, reference to the IKirchhoff approximation strictly relates to

the definition above, not a single scatter approximation (to be discussed iii chapter

0 four) which usuially goes hand in hand wvith it.

Validity of the Kirchihoff Approximiation

* f (a)(b)

.......... ...
.... ..0. ... -...

.S. ....
Sk ... ..

.... ..
.. ........... . ...

Figure~ ~ ~ ~ ~~~~~~~~~~~. 2.4 The. ta..n toasraefaue.t a ag n 1 ml aio
.cuv.r co............... wi. the i.u.ia i..g wav.length

0. ...........
Obviously,~~~~~..... th........ .~ilf ..r. mtonwl.egodwe herdu f uvtr

of~~~~~~~~~~~~~~~~. a... s-r-- fet--sl-ec~la~ ihteiluiaigwvlegh(e ii
2.4), ~ ~ ~ .or .........l l.. th curatre ..i ml ncmaionwt erirc o

.... .....S .. ...
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0the wavelength:

<(2.52)

Beckmann[1i1 and OgilvyN state two criteria which are slight variations upon equa-

tion (2.52). Both are derived from geometrical considerations; the first is 0

C <4rcos (2.53)

0
where 0 is the local angle of incidence on a tangent plane. Unless 0 is greater than

85 degrees, this inequality will support greater curvatures than will equation (2.52).
0

The second variation,

C < -cos30 (2.54)
A 0

again weights the inequality in favour of larger curvatures until the angle of incidence,

0, is greater than 47 degrees.

For an understanding of where these inequalities come from, the reader is referred 0

to section 4.2.2 in i-ference [1]. The purpose of presenting them here is to showv that 0

equation (2.52), to be used below, is sufficient as limitation on the applicability of

the Kirchlihoff approximation.

The reason for expressing the inequalities in terins of C is that the curvature dis-

tribution of a Gaussian randoni rough surface ,. already been determined; it. is

Caussian, has a zero mean and a stanidard deviation of

r t
2Oo, (2.55)

The standard deviat ion will (let ermnille the proportion of the surface curvaturcs wlIichi

are large enough to iMvalidate equation (2.52).
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In what follows, an attempt is made to gain some idea of the surface parameters

(standard deviation and correlation length) which are allowed within the Kirchhoff

approximation. It is important to note that it is the approximation of a surface

point to its tangent plane which is being examined here, not the validity of the

application of the single scattering model (which will be examined in more detail in

chapter four). The dependence of the inequalities on the angle of incidence will be

ignored, as this only has a noticeable cffect when large.

The percentage of curvatures which lie within equation (2.52) is easily determined.

Equation (2.33) is subst-itut-ed in to the limit, of equation (2.52); the niumber of

standard deviations available within the hEirchioff approximation for a partaiclar

surface is then

N v'A (2.56)

which is easily converted into the percentage of curvatures lying within equation

(2.52) by noting that lhe probability distribution for a Gaussian probability density
function is the error function. The fractlion of curvatures, ,, within the limit of

equaltio, i (2.352) Is ther,'fore

f = 2 erf(N) (2.57)

Figure 2.5 shows the limits of equation (2.52) for boundaries of N =- 3,2.5,2, 1.5

and 1 (99.7%A. 98.8X, 95.5%, 86.% and (iS..3% of curvatures respectively within the

hlmit).

As can be seen from the figure, within tdhe light rogion (to all illte lcs alld purposes),

the whole distribultion of surface curvatures obeys inequality (2.52): in fact, the

majority of these curvatures will be close t.o zero (the niean) ai ld well within the

Iimit.
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8.00

-- 99.7%0

6.0 """'95.5%

4.0

2.0-

1.2.030..05 0

F i u e . : e i n s o v l d t y o t e K r h i f f a ) 1 r x m a i n o G u s a n s r f c

Ficaureit ma5: Regen oflvlindit o the JMrchhoff approximiationn ber Gapplied witfacn

fidence to any Gaussian su ifacc withbin 11he lighlt region. It. is likely to mneet ]e'Sb

success with surfaceb clo.ser to the darker region, fairing worst. near' to the o, axis.9

The depend~ence of applicability on t.he angle of Incidence will only, manifest. itself

with those surfaces which lie close to the boundary of the 'Vood] region of t-be figure,

and then only when t~he angle of incidence is large.



0

0

0

0
0

d~b3.1 Random Rough Surfaces

All of the surflaces to be studied here will be two-cliiiensioiial.I, thle roughniess of

0 ~thle sUIf(C'\ill-fc wil ot. depenid u1pon direct ion - it. will vary as a. function of both XMR

y. They w ill also hav\e Gaussian height distributions and correlation functloion. -the

reasons for this are that, it is p~ossible to create a~ surface withI known Gaussiaii statis-

LILs; it is ei~ to woi'uk tleftiil wit snuj surfaces and di lat diire already exists

a selection of Gaussian surfaces whose parameters are known ýýiid whlo~se scatteringf

p~rop~erties have b~een investigaied!1 2] Onc-dii mensional surfaces,- are not considcred

in this wyork as they (1o 11ot 1)1'0(111cc the required two-dimnwisional sp~eckhe patterns.

3.1.1 Surface Manufacture

In order to gain] a mevasure of control over the statistical properties of the surfaces,

40 a miethod developed by GrayllS] was used, This miethod involves coatiug a. glass

0 ~substrate with a laver of a photoresist which has anl approximately linear height re-

* 67
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sponse to exposure t~ime. The coated substrate is then exp~osed to speckl-e patterns

created by illumninating ground glass. The surfaces used for experimental mieaSurIe-

rnents presented in this work were not manufactured by the author, but were chosen

to enable comparisons with existing published wvork.

Preparinig the Substrate

The aim here is to deposit a. flat laver of 1 )hotoresist onto the glass sub~strate (ap-

proximate dimnensionis of .50 x 50 x :3mm), wvith sufficient thickness to allow a surface

with an rmis height of at least 21im to remain after the iiecessary etching. This turns

out to be anl initial coating around 11pm thick.

The first stage to be considered will be cleaning the glass substrate; this is import anit

not only for improving the adhesion of the phiotoresist, but also to remiove any traces

of dirt or cilimicai imipurities which may affect the final coating. Initially, the glass

plates are washed -.:i hiot iv'ater wvith a dletergent, to remove grease andl (lirt. Next~, the

plate is cleaned with acetone to rcemove any chemical deposits on the surface - somec

of which will be left b~y the detergent. Finally, the plat~e is wiped with isopropaiiol.

This last stage is iieccssary since it w~as found that acetonie leaves deposits which

adversely affect the photoresist, p~roducing striations.

The photorcsist. usedl, which was found to have a good linear response to the exposure

tim,., is Shipley S1400-37. This photoresist is also sufficiently viscous to p~ro(.ti%-,,

a thick coat onl the substrate. The mnethod of spin coat~ing is usedI to deposit the

photoresist onto the substrate; the figures given below were founid empirically, and

produce a uniform coat of photoresist of between JO arid 12 pin thlicknesis.
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A cleaned substrate is fastened to the centre of a turntable set up to spin at :300

revolutions per minute. While the turntable is stationary, photoresist is applied to

the centre of the substrate with a syringe, until the natural spread of the liquid

reaches the edges of the glass, about 3ml. The turntable is now set spinning for

four minutes. Again with the substrate stationary, a similar close of photoresist is

* applied. Finally the turntable is spun for a further four minutes.

After allowing twenty four hours to dry at room temlperature, tme coated s.ubstrates

are baked, a.t ninety degrees colcius (this is below the temuperature at which the

photoresist, melts) ful thirty lluinoul.es, to drive off any remaining solvent in tile p)hO-

toresist layer. I, is now ready to have a surface profile imlposed upon it.

A few factors need to be considered during the manufacture of thi. coated plates.

In order to produce a perfectly flat layer of photoresist, air bubbles must not be

allowed in tile photoresist; as long as care is taiken with the syringe then the process

outlined above will ensure this. Dust must not be allowed onto the plates at any

stage during ma-nufacture; one speck of (lust call producc a relatively large area

which will not react properly to exposure - this is especially a problem during the

twenty four hour drying period, any (lust settling on the surface during this time

will stick, and after exposure, a spike can remain sticking up above the surface. It

is possible for dust to settle on the photoresist nea-r the edges of the plate without

invalidating its use as a. surface. Finally, care must be taken not to scratch the

photoresist, compressed air should be used to remove ammy (lust which settles after

drying.
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Etching the Surface Profile

The required surface profile, as mentioned previously, is Gaeussianly distributed.

Fortunately, a profile of this approximate nature can be achieved by simply exposing

the photoresist to eight uncorrelated speckle patterns, the number being found as

follows.

It can be shown that the probability density of the intensities in a speckle pattern

with mean intensity 71 obeys negative exl)onential statistics[`°], 0

, l(,) .- (- X )p ( - (:3.1)
--71 \ 1)

and that the (unnormalised) probability density function of a superposition of N

uncorrelated speckle patterns, each with mean intensity il, is

= -M 1 )NN'N exp •IN (:3.2)

0=

The variance for this intensity (list rilut.ion is

02 ~2 (3.3)
IVI

Repeated integration bys parts is necessary to find this.

Figure 3.1 shows the form of this distribution for various N. Eight speclle patterns

are taken as the optimum number to a-chieve a Gaussian profile with the maximun i

possible variance - the numlber at which a Gaussian curve, with a variance e'jual

to that given by equation (3.3), is most similar in shape to the probability density

function, equation (3.2). Note that as N increases, the profile becomes more Gaus-

sian (cf. central limit theorem), but the variance of the distribution reduces, thus
£•.

0
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* 1.5 Mean

1.2 -
8 \ Gaussian, standard deviation

set to match N=8
* 0.9 5

00.6

0.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 3.1: The probability (density distribution of the intensity of t hI SUperposit ion_
of N uncorrelated sp)cckle patterns, each with mean I; = 1, for various N.

reducing the rins surface height - quantity potentially required to be as large as'

* possible.

These eight uicorrelated speckle patterns are created by illuminating, in turln, sep-

Sarate plates of groLidi glass with the 4,57.9n.in wavelength of light from an argon0 ion

laser. The photoresisi used is particularly responsive to wavelengths approaching

the ultraviolet region of tte spectrum.

The geometrical arrangement for the exposure of the coated substrates is givelu inl

figure 3.2. Collimated light is incident on the ground glass diffuser i;i an attempt

to produce a uniform field at, the surface - important to give a uniform statistical

variation to the surface height. The size of the illumiuiated area of the diffuser, and
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the distance of the substrate from it., determine the speckle size on the phiotoresist-

this determines the correlation lengthi (the l/e point of tlie autocorrelation function)

of the surface.

Photoresist 0
Coated Substr~ate

20x0,A 15 gim
Objective Pinhole 200 mmz0

-- ' Lens Ground Glass

L- Spatial Filter Diffuser ___ ____

Figure 3.2: Arrangement for exposure of phiotoresist coatedI plate,, (luring surface
creation.

For a more precis,- idea of hiox Ithec a rrangentnit. wili affect the correla tioit hiigtl of

the surface, a simple statistical study is niecessary. Given t hat the heaiui i icideit. on

the ground glass p~late hias a Gaussiani cross-section, then thle correlation b~etween1

twvo points of the speckle lpatf.crIi i.*ii

where it has been assumied tOat the speckle p~atternl is statistically stationary. Ar is

the dista~nce between two points of the speckle pattern, and W is the 1/C. half width

of the Gaussian beam profile at the ground glass plate. A is the wavelength of the

light, and z is the clistaunce of the surface fromi the diffuser.

From equation (3.4) it can be ween thiat the correlation length of a speckle a~t the0
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0 surface, and hience the correlation length of the Surface. will be

T - (3.5)

The p~aramreters z and w in the arrangement can be adjusted WARi r is of the required

size. Generally z will be set such that it is just large enouigh (or the speckle field

to appear uniform over the subl)3trate (about 400mm), anything larger would jtist

reduce the am-ount of p)ower incident on the photoresist and hience increases exposuire

time. This leave-,s,,o ast lIe iuai1 iIU haiiclleol T, but becaulse it. Is not poý; HIcl to nirasl e

the 1/c half wid t.h of a. a tissial iibeafli quickly an pi 1 i('i5ly, (espc(' i lay for la rge -

when w is smnall (if thle requiredl -r is 1-501177 the(Ii w' is ap~proxili iatcly 0..Iiin - for

the wavelength anld distanlce sp'cified above), T call only lbe roughlyv controlled. Finie

tuning is readlily achieved by adj Usting :- slightly3.

The rms height. of the surface call be controlled by exposure t-imle; thle niaxiniumil ti me,

before the photocc-:ist- is remloved clowný to the glass saibstrate, has becii cet ermIi ned

eXp~-I-ermetally for substrates p~repared using the prIocedlure descrjh)(.(l above, and is

given in minutes lby

275

where I is the average light initensity in the p~lane of the suibstrate iii flit arbitrary

u nits given by tlir 13ei'ry nira h". The number')CL 275 was fouind cxpr'-riniiintally, and

converts the intensity readings given by the meter into minutes of exposure timie.

The finally calcuflated exposure time should be divided by eight and each speckle

pattern sIould be p~rojected onto the photoresist for this tinio. This maximumn

exp~osure wvill give the surface anl rins height of ap)proximnately 2pm.-

After all exposures are comiplete, the surface is developed in a mixture of one part b~y
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0

volume of Shipley AZ-303 to five parts water for thirty seconds. Finally, the surface

is rinsed under running water for about three minutes, and dried with compressed

air. A quick check should be made to ensure that the glass substrate has not been

exposed through the photoresist at any point.

3.1.2 Gold Coating

0

The last stage in the fabrication of a surface is to deposit a thin layer of gold, using

vacuum deposition equipment, onto the photoresist. This layer provides a highly

conductive front to the surface, enabling its scattering properties to be conipared

with theoretical studies which assuitie the surface is a perfcct conductor.

The complex Fresnel reflection coefficients for gold are given by the sequence of

equations in chapter two., starting wvith equations (2.49). The -square magnitudes

of the coefficients, 1?+ and Tv-, the reflectivities, are shown with resl)ect to angle

in figure 3.3, the refractive index of the gold taken at a wavelength of 0.(i63t3pi as 0
0.167 +3.1491142]. It cain be seen that the curves are close to unity and ap-proximatcly

flat, indicating that the reflection coefficients are only loosely dependent on the angle

of incidence; a favourable comparison with a perfect conductor where RI2Vj is 1 for 0

both polarisation states.

0

3.1.3 Surface Characterisation 0
0

Since only rough control over the statistical parameters of the surface is attainable,

a method is required to gauge more accurately what these paraineters are. For all

of the surfaces mentioned in this work, a Rank Taylor-Ilobson Talystep mechanical
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IRI 2

1.0 -R-----

0.8

S0.6

0.4

0.2-

0.0 L III
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SF_ _ _ _ __ _ _ _ _ __ 0 i /degrees

Figure 3.3: Fresnel reflection coefficients for gold at A : 0.6:331im over a range of
angles.

surface profilometer was used. It has been shown that this histrunwnt does not

significantly damage the surfacei']; nevertheless, measurements were made away

from the region on which light was to be incident, and the assumption that the

statistics are uniform over the whole surface was made.

The profilometer operates by dragging a stylus across the surface; the stylis available

was a diamond wedge of dimensions 1.8 x 0.51im. A force is applied to the stylus

SD to maintain its position in contact with the surface, and this force varies as the

height of the surface changes. Generally the load applied to the stylus should be

around 6mg at the middle of its displacement range, this will mean that for a typical

surface, the force should vary between about 2 ntg and 10mg at the extre ties of the
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range. The force is not constant as this is the quantity which is measured by the

instrument and converted into an electrical signal. This electrical signal is amplified

and filtered to remove high frequency vibrations, finally passing to an analogue-

to-digital converter. The end result of this process is a digital representation of a

21nm line on the surface; computational processing can now be performed to find

the various statistical quantities.

Processing th -rofilomneter Data

As it is not likely that the surface could i)c positioacd, by hand, exactly lhvevl ---der

the stylus, the trace imist have any overa!l t,'enid in its gradient reniove(l before 0
either of the surface parameters can be obtained it. To achieve this, a straighlt line

is fitted to the data by the least squares method, where the surface height at allny

position along that line is the distance to the trace along a pel)elndicular to the II ile.

In other words, the trace is shifted to the origin and rotated such that. the meami

height and the mean gradlient are both zero. The gradients removed by this mIetlhod

can be smaller than 0.001.

The standard deviation of the trace is now easily calculated. This will be the 0
standard deviation (rmis height) of the surface over the length of the scan. Figure

3.4 shows a histogram of the distribution of heights over one scan, a Caussian curve is

also shown with the same standard deviation. It can be seen that the data. has a. formil

which is roughly Gaussian, the de'parture being due to the long correlation length of

the surface presented. The actual value of the standard deviation attributed to the 0
surface will be the average of many such individual trace values; the error associated 0

0 -••
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with it will then be the standard deviation of the spread of values.

Normalised
• Frequncy

Standard 2.09tm
* Deviation 2

0

• 1 .[I

-8.0 -6.0 -4.0 -2.0 0.0 2.0 4,0 6.0 8.0
-surface height / ptm

0 Figure 3.4: Histogram of the surface heights over a single scan of a surface (surface
#80 - see later), a Gaussian curve with the same variance is also shown.

• The correlation length of the surface is obtained by performing an autocorrelation on

• the trace. The result, after dividiag by the variance, is the autocorrelat ion futction.

0This will be approximately Gaussian in form (since the beam profile used to create

the surfaces was approximately Gaussian), at least., for very low lag (S\r) values:

•Cs.s(Ar) = exp (-2) (3.7)

• A least squares fit of this will give the correlation length.

* >:[ 1 a:(ln y)2

0 Figure 3.5 shows the correlation fumction calculated for a surface trace. E(,uation

* (3.7) is also plotted for a correlation length calculated by eqmat.ioil (3.8) for theSI
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1.0

Surface Correlation Function
S0.8

0 ------ Fitted Gaussian Correlation Function: 0
Correlation Length = 19.54 im_-

~0.6

0.4 0

0.2

0.0 --
0.0 15.0 30.0 45.0 60.0 0

Lag/inOm

Figure 3.5: The correlation function of a surface scan, a fitted Gaussian correlation
function has a correlation length of 19.5-tton.

portion of the function which has a value greater than 0.1; i.e., n in equation (:3.8)

is determined by the point at which the data first drops below 0.1 with ic(reasing O

lag. This is necessary because as a-t higher lags, the correlation function will oily 0

go to zero for an infinite trace length. Again the Iparameter for the surface and its 0

error are obtained by averaging many such correlaticn lengths. O

0

Stylus Size Considerations 0
0

For a. surface where the radius of curvature of the features is greater than the width O

of the stylus tip, it canl be assumed that the size of the tip will not greatly influence 0

the measurements obtained. However, once the surface features are of a similar O

size to the stylus used to trace them, the tip dimensions will affect the measured 0

01
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surface heights. The 1.8tun x 0.51am stylus used here is suited to the analysis of

one-dimensional surfaces, and does not introduce significant error in these cases[4a];

but with a two-dimensional surface, the extra width along one side will prevent the

stylus from properly tracing the surface portion underneath its centre. The stylus

will in fact trace the highest points under the whole of its width, as can be seen in

figure 3.6.

II

Al B

Sa ....... .......... ... ---... ..............

Surface Profile

Figure 3.6: Finite stylus tip size prevents accurate tracing of surface features of
a similar size. The scale has been exaggerated, generally the effect is much less
noticeable.

The errors introduced to the surface parameteis have been examinedtl31, based on

an assumption of a circular tip[I41. Relations derived between the measured surface
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parameters and the actual values, for Gaussian surfaces with a Gaussian correlation

function, such as those studied here, are:

2o 2_ (:3.9) -O 1 Cror., 0 1 6 -r2 T-4 ]

1 = 1 - 15y2R2  (3.10)
T0

where the subscript m. represents the value as measured by a stylus ti) with radius

R and - is the rms curvat tre of the surface:

" 2. = v3(3.11)
r2-

as derived in chapter two.

The actual effect of this finit.e tip size (1.811m. across tile wvidtih) Vili introduce anl

error of less than two percent to the measured parameters; although much larger

than for one-dimensional surfaces, it is still swamped by the statistical uncertainty,

even for the roughest of surfaces studied here (see below).

3.1.4 The Surfaces Studied S

Three surfaces will be used in the experimental investigation, all of which are ap-

proximately Gaussian in both height distribution and correlation function. The

parameters of these surfaces are given in table 3.1. Surface #80 has prelviously 0

been reported to be a Beckman surface, i.e., it exhibits only single scattering[1 l2 .

Surface #83 is one which shows strong enhanced back-scatter, a multiple scatter- •

ing phenomenon[12]. Both of these surfaces were manufactured by Mendez and •

O'Donnell. Surface #239 was chosen as an 'in between', it is expected to border oil

the realm of multiple scattf-ring - this was manufactured by KIin [41). .

0v-

, 0
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Surface a / jan r / yin
*#80 2.27 ±0.2 20.7 ±2.0

#239 1.134 ± 0.1 7.0+ 0.5
#8.3 10.9-± 0.1 2.73 +0.08

* Table 3.: Rims height. and correlation length for the surfaces to be studijed.

* ~The surfaces have I)een plIottedl on a graph showing the validity region of the bIirch-

hoff approximation (up to 99.77o of curvatures valid) in figure :3.7. It. can be sveni

that all three surfaces have gradient~s Varying suifficicntly slwyfor (the Nirchlloff

5 ~approxim-ation t~o be expec~ted to app1ly.

* 40.0

* 30.0

20.0

* #239

10.0 - 83 ~Apeint~

0 .0 -. .. . .. .

0.0 1.0 2.0 3.0 4.0 5.0

Figure 3.7: Surfaces #,SO, #239 and #83 plotted on the IN~irchhloff validity griaph
*for a wavelength of A =O.633/im. The large black areas repre~sent the errors in thle

m( asurements of the surfaces.
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3.2 Obtaining the Angular Correlations

3.2.1 Experin. ital Equipment

The equipment. used is shown in figure 3.8. The illumination source is a Uniphase

i.OmlV Helium-Neon laser em'' ting linearly polarised light at a wavelength of 63331?m.

The orientation of the laser controls the polarisation of 'he light incident on Ilie

surface. The speckle palttIer1 are digitised with a Ihi iiceton lnstruminis 512 x 5512.

297m pixel, sixteen bit. peltier cooled CCD caiiera (accurate to one bit - the

readout noise is about 10 photoelectrons), and transfe(red to an magneto-optical

disk for later off line proces:;ing. A polarlser is positioned ii, front of the canmera to Awl.

enable control over which component of the scattered light is detected. No iniaging

optics are used, a speckle pat tern being formned at the C(D elementt purely by the

free space propagation of light from the surface.

The camera was not a.ctually mounted on the end of the ariii as shown ill figure 3.8

snice lt' weight wo:uld have put an i'n:mcessary stress on the rig's bearings. Instead,

a counter weight was removed from the •rin, and the camera was mountled ill its

place --- much closer to the bearings - as shown in figure 3.9.

As the camera is now iounuted behind the surface, a mirror must be positioned at

some length along the arm, angled such tha.t the light. scattered around the sjecalar -

direction is ;ent towards the camera. 'lie camera's position and the ang;les tlit

caunerat amn mirror were tilted, at were chosen to give a path lengtn froni th., surface

to the camera of arothIld 900;11in.. The camerit was also high enough above the 0
surface that its view wa.s not obstructed by ttn' surface mountings. Fine control of

Si
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*
S" "- - Frame

S.*JDelivery Optics Grabber
O "•"'-CCD Camera

Q ,, "Polariser

u Sun
. . uWorkstation

*'.Surface LUnder Investigation Network
I -

" .... SMotor optical

Motora

Figure :3.8: Schematic diagram of the rig used to control iilci(en(Qce and viewing
angles.

tihe path length was obtained by moving the mirror along the arm and illunifinati ng

the surface at a hetight which would mean the centre of the camera was looking

exactly at the laser spot.

The angles of the mirror and camrca mounts were cut to a toleraice of le:ss that 0.1

degrees. A !reasnrement of the p)ath length after construction gave a. distance of

-00 . 5rmm.

The size and iauniber of speckles formed at the CCID element is an important consid-

eration. Obviousi.,, a large number of speckles in an imnage mean that the statistical

properties of that image, such as the mean and variance, can be well defined, How-

ever, this desirable cri eriop must be traded against the need for each individual

3.CIIcl-le to be well dctin.-d, a limitation imposed by the pixel size of the CCD array.
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. .. .. . ..

From "To workstationsFrom , i"'

Laser ....

M inror tilted ........
back 7.5Mount in place of rig

arm counter balance
:Rotation axis

looking in the specular direction of scattering from the surface.

The speckles in the image must each have sufficient intensity information in order

for a correlation to be meaningful. Speckles with a ten pixel diameter provide this

information, while still allowing around 400 speckles over the whole image.

The number of speckles on the CCD element is controlled by the size of the illumi- 0
nating spot on the surface. Since the detector is in the far field, the speckle size, w, 0
will be set by the diffraction limit of the system, roughly given by:

1 .22Af (3.12) 0
D

the aperture diameter, D, being the beam size at the surface and the focal length, f,

being the distance of the detector form the surface (in this case, 900inm assuming

the beam comes to a focus at the CCD clement). If radius of a speckle is w, the

area of a speckle, rw.', is the 14 x 14rmmn CCD element area divided by 400 (the

number of speckles required), about 0.5i.mz2 . The required beam diameter, on the

surface from the above equation is therefore roughly a3om.

0i•..
0E
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Note that the CCD element sub~tends anl angular of auoundl 0.9 (eglees Iin both

directions to the surface (solid angle, 0.0002 steradians); aii hiwhvidual speckle has

* a width of about 2.5 arc minutes subtended froin thme surface.

Contiol of tI, angle at whlichi the incident beamn strikes -ilie surface (the orienitation

of the surface), and the angle at which tile camera is p)ositioned( (the orientation of

the rig armi), is by mnearis of two siwpper motors. These provide ami angutlar resolutionl

of 2' (two arc minutes) per step. Currently, the geometical situat ions attainable with

the rig are limit[ed t~o those of ýin-plaiiti' scat.terinng - the surface norma11l1, inicidenit.

beami and direction of ob.servationl ail ly-ing ill a plan"-. Thi. lowver, i~s not a

problem~ here as oh-orivatioim 1., confimcd to the specalzal directionl.

0A PC, whilchl performs Iiiaim" duties :,I tile laboratory, jplOVi(ic", the Interface to lie

stepper motors. The Sutn Nvorkstation otrlin lie experiuIenlt commuiinicates with

*tile PC via e,-jja l fc i lne.

Dlue to the lit.(of the measUrements 5unghit, special care must. be taken to ensure

thmat thle cela-ie of the 'iaser beamfl is targeted exactly oil ibe axis of rotation of

the surface. Failure to achievvc this will mean that at different angles of incidence,

separate lporhti))ns of the surface will ;), illuuiinat-ed.

Ili order to gain the inaximumn alvalititge offered 1- tike caimera, the mli egration ) timle

is raisedl or loweredi stcic thlat the mlaxitmum11 pixel vallue Iiu any one image is beCtween

50000 anmd 650,00 (thme maxinnanin valuic attainable be-ing 05,535). Thtis mecans thai as

the intensitIy chmaiigcs. over the range of sPeckle patterns, the camera wvIll adjtirt to

utilise n~.tof its intensity resolution. The inaxý,i.-Tn Intensity the camera canl view..

is hlnitci! byý th1e fastest Aititt~er speed (,ab-out. 1Cmni.). As the correlation priocess
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described below removes any dependence on the overall intensity of tlie speckle

pattern, upsetting the relative intensities between the patterns will not affect the

correlation results.

3.2.2 The Speckle Patterns

Figures 3.10, 3.12 and 3.11 show histograms, taken from a single frame of the raw

camera data of spcckle patterns, obtained from surfaces #80, #239 and #8:3 at

va-rious angles of incidence. and(l for different polarisation arrangclinenlIs.

No. of Pixels 1 --e

60000 -og 10(No. of pixels)

50000 4

3-
40000 22-•

i0
30000

20000 0 10000 20000 30000 40000 50000 60000 0
Pixel Intensity Value

10000

00
0 10000 20000 30000 40000 50000 60000

Pixel Intensity Value .

Figure 3.10: Hlistogram of the intensiy values of a speckle pattern fornied by snrfacc
#80 at ten degrees incidence and observation in the specular direction. Incident anld
detected light are both s-polarised. The same data plotted on a log scale is inset.

As can be seen, surface #80 and surface #83 produce speckle patterns that have 0

0 _--_
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No. of Pixels loglo(No. of pixels)

*60000 5-

50000
* 3

*40000 2-

30000 1

0 .0 "0
20000 0 10000 20000 30000 40000 50000 60000

Pixel Intensity Value

10000

Figure 3.11: Histograrn of the intensity values of a speckle pattern formed by surface

* on a. log scale is inset. hf-
* roughly the negative exponential histogram expected[")], but that. the first few bins

* are considerably less than they should be. This may be explained by noting that

a large amount of light is scattered around the laboratory by the rough surfaces,

*and that this will be registered by the camera as an ambient light level, adding to

* every pixel and shiftiag the histogram to the right; i.e., zero is no longer the most,

* probable intensity.

The quantity ai/(I), which should be 1. for a true negative exponential, for the

speckle pattern in figure 3.10 is 0.72. This increases to 0.91 if the first two bils of

the histogram are removed from the calculation, giving evidence that ambient light
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is the distorting factor. This may be shown further by supposing that the lowest bip.

of the negative exponential should contain all the light which has appeared in the

two lower bins - adding this in gives a al/(I) = 0.98. The errors on these figures

may be considered as ±5%, being the statistical error on a sample of 400 speckles.

For figure 3.11, au/(I) is 0.54, but increases to 0.88 after subtraction of the first

three bins. If the subtracted amount i' added into what was the fourth bin then the 0
value increases to 0.93. As above, these figures have an error of ±5%. 0

No. of Pixels 0
60000 - 0 •

40000 -

30000 .
sPP

20000 -S

It•
20000

0

0 10000 2000V 30000 40000 50000 60000
Pixel Intensity Value

Figure 3.12: Histograni of the intensity values of a speckle pattern formed by surface
#239 at thirty degrees incidence and observation in the specular direction. One data 0
set. has incileix light s polarised and observed p-polarised, the other has incident
light p-polarised and observed s-polarised.

A'; the mean light l•\el iF subtracted from each speckle iniage before any further 0
proc•essing, this anmieint light is not, expected t.o greatly affect the correlation values -
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to be obtained (in terms of invalidating any comparisons to theoretical results).

The large shift to higher vaiues for surface #239, in the cross polarised case, may

again be attributed to the ambient light level. The shift will be enhanced by tile

jlow intensity detected compared with the ambient light level. \When considering the

integration time of over 30 seconds and the large amIQount of light sCattered arouInd

the laboratory which was not initially depolarised, it is surprising that the shift is

rnot greater.

The departure from the general negative exponential shape of the hist ograms in

figure 3.12 is not so easily explained. It. is possible that it is due to a large a1mo unt.

of co-polarised light reflecting off of the polariser pllaced before the camera, and

striking the surface again, producing (albeit with less magn itude) another cross

polarised speckle pattern. The observed histogram would therefore be a combinat ion

of the two patterns, which would give, as seen earlier, a more Gauussiau shape. The

specular geometry of the experilments woulil Support this hypotlicsis.

liowevcr, it must be borne in mind that the cross polarised results for surface #239

were taken near l.e practical limits of the equipment used: previous wvork with this

Ssurface (studying the average intensity in a given direction) reported mn observed

depolarisationl"I. The experimental rig was not designed with a view to studying

very low ,tiiouuuts of depolaiisation. In future, the rig could be modified to cope

with the abuve p)roblemn, allowing thorough scattering studies fromu surlfaces such as

Sc[7 surface #2:39 which only evidence slight multiply scattering.
I

I
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3.2.3 Processing the Speckle Images

After having recorded and stored a range of speckle p~at~tern~ images (the' range couldl

be imiages at incident angles separated by one degree -- oae image represenit ilig one,

particular alignment of inicidlence and observation), the dlata must be proces-sed to

obtain values for the correlations.

C orrelatijoni

0 --

0-

The numerical miethod employed to olbtain the correlation coefficient uses the con-

Vut0iot Gicumii TCII'\ itnTtlhl %I (jliU0tjlI UVUL. 4 sI'EILM iII OEIM) '(1 tCI."

it gives the location of tile best correl atlonl, without presuming it Is anl exact over-lay

of the two images. An outline of the cokeputational steps involved Is given bc-ow:

1. Zero the in ean and noredalise one image (sthle reference image).

.Perform a fast Fongier transforme (yFT) on the refere--ne image.

3. Find the complex conjlugate of the transform.

8.ai values for twpekithe correlations inp us-roucd

0•

6.oPrfrmelieatiieoulilctinonhs rnfrmwt h cnuae 0 •Z

Th. Suearichl forthod pempok d otin the correlation nic utp oeiliced t 0sste 'n
0•

0•
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Norimalisatioii is achieved by setting the sum of the value of all pi'x l's squared to

* ~~one (Z(a9) I

This whole pr1ocedure results in just one number, the correlation ('ct Iicieit, l)CtW~.'Cn

* two speckle p~atterns at dlifferent angles. This flumber is in tile ranige 0 to 1, 1

occurring when the reference is correlated %vith itself (idei~t ical ) and 0 occurring,

when the two images have no simillarities \\'hlatso)ever. To ob~tamn the curves presenited

later', a ra iige of (ldat a' im1ages mu Lst, he correlalted wVit1l a siligle feiie'inaei

the above lproce-dll- nrc mst be repeatedl froml stepI I nut i suf) Wilhlen va I iis at (Ii herciit

angles have b~een prIocuredl. One set of Sp)ecl~e pa'tternl im1ageS IS enough"1 to pro(Iue

correlation curves for any referenice angle wilthinl that set; onlly onle experiivitl n Intaillu

is liveeSsary.

Figure 3.1:3 shovws two speckle plit~tcrns and their correlation mnap. rligurc 3.14 is

ataethrough the centre of the correlation map), the height of the peak is the

correlation coefficient (note that tue wvidth of the pea,:k gives the speckie size in the

autocorrehation case, i.e. when the sp~eckle pat ternls are identical). The peak wvill

not appearý at thle Centre of thle. graph if the two sp)eckle patt ernis have a relative

The small fluctuations near the x-axis inl this graph, indicating that, smlall corre-

lations exist at relatively large displacements of one Speckle im,1age with zc.5pect. to

the other, are anl artifact of the finite sizeý of the pat terns correlated.. If the corre-

hated fields wec infinitely large, these fluctuations would Vanish leav'ing a smlooth

line along the axis. Notice that the heigh~lt of the fluctuat ions reaches a nIaxinliulli

of about 0.05; thii' zis the level of un11certaint-y expected fr-oli images, such ats these,
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F ig ur 3.13: 0 1) 1 a i IIi IIg I e c o rrela IitIi o nI c o 91 c(i e It o f Iw o spe) c kl 1 p)a tterns I .. 'I h e( cross-O
corre-la~tioll of two li-nmallsed, Zeco'( lllcall speckle 1patternls giving the cor'rel~t.,101 Milla

containing 400 S,' hs

This mhiiiiiiiii level of confiden('(' will affect th~e Correlationl coeffh'ic'ut, oil('(. 11 is • -

reduced to that extenit. It. will niean dhat. In later Correlation curves, the iilt 0 -

of th,':! cori-el,-tiol co ililoil''t. will aplproac,1 this h.evc.! and not. drolp to Zero as ili;iy I)v,

expected. Var1iouIs 1110tIhods have benemlployed to ext ract the corr('clat loll coeflclMeill

______ ______ __O __

Cy [- 1.0

0.8-

0.6

0.4•

-256 -192 -128 -64 0 64 128 192 256
x lag / PixelsO

Fýigure 3.114: A slice alorrg el huczolital cofh llitgh of two pckllte( of the (orlT 'loll
Thai iun figure 3l13- vle ofcak of wil culve Is the orrelation co('tlicit'It 0
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fromn the cot relation iiiaps ci-cated 'see below), but the level at which thle correlat ion,

is no longer meaningful is the samie for all methods, tile di ffereiices bet weenl themi

being puriIely cosmetic - i.e. some give more information belowv this level thtan

others, but information in this region is unreliable.

Mean Intensity

As the relat-ivfe intenisi ties of the speckle p~at terns have lbeeii (list tin )d. it is iiot

possible to derive ain i iit~ensi ty p)lot b~y simply averagiog ithe piNxel values of each

iiiage. As any- exp~lanation of the correlations ob~served mutst. also apply to t he

intensities, it was considerecd niecessary to perforum experimnlit~s t~o obtaini the results,

Und~er simlilar1 Ci rcumstanices.

U~nfortunatLely, prieviouis intensity results obtained wvi th (essent ially ) thle equipmient

described below, onl the samle surfaces as Studied iii this work, wereC not con'sidleredh

with observation inl the specular directioah i[4]

The illumination of the surface is by mneans identical to that used to obtain the

correlation results. However, now a phiotoinultiplier tube (liNhT) is used to take the

results instead of a CCD camera, this has a lens placed in froiit of it to collect thei ~scattered light. The LPNIT is connected to a high tension power suppjly and its out-put

is fed into a phase lock-ini amplifier. TFie amplifier is connected to th lie biquitous

PC wvhich communicates with it via anl IEEE interface. A beani chopper hplicedh

about hialf way along the beam is connectedl to thme aiphi ticr. The Suin workstation

is no longer necess;arv in thme chain.
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3.2.4 Enhancements

0

Some experimental limitations oil the accuracy of the correlations can be removed

during processing, these will De discussed now. 0

0

Image Alignment

A problem noticed while sequenially displaying speckle iinagtes at h iglh spe',l

always a good idea, to ensure that the datia looks valid - was that as well asil

'evolving' as expected, the whole pattern was slowly oscillating froin side to side;

this was possibly a prol)lem with the stepl)per motors. The oscillation wea it that a iv,

two speckle images would noi. overlap exactly. For the purposes of t he corr-'lht ion,

this is generally not. a worruy; however-, if any lrocessing is to he perforli ed oil lhe

speckle images, niisaligped patterns could pose a great probleml.

The speckle patterns are aligned by lperforming a correlation, but instead of fidmli g

the value of the peak in the correlation map, the position of the peak withiin the

map is determined. ''ltis gives the offset which must be applied to one image befol-e

it overlays the other - the whole image set is aligned in this way with the reference

image, and a zero border is set around each image which absorbs the areas which

do not overlap.

After having employed this technique it was found that. correlation values increased

slightly for the ,:ame set of data. Obviously some noit-trivial degree of co.rre'lation 0

niiust exist before this technique could work. 0

0
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* Q Pattern Shrinkage

* If equation (3.5 in section 3.1.1) is expanded to depend onl cartesian coordinates,

such that there exists a T, and an orthogonal T., then it can be seen that any

* increase in the beam width along the x direction, LI),, would decrease ,-: whilst

leaving r7 unchanged. This situation occurs for increasing angles; of incidencc in_

the experimenital work. As the surface is tilted to higher angles, so thle laser beatn

spot elongates across the surface along the horizontal direction: 1his ilcans that

the speckle pat-tern wviil shrink horizontally (and also c(ha!ig' to somite extent) at

increasing angles of incidence.

0As the shrinkage is not .,ccounted for in any theoretical studies later, two techniqus

were employed in an attempt to mininize its effect. The first involved ;lacing a

mask on the surface allowing only a certain area to be ill ui nated, regard less of

the angle at. XVwhichi the light is incidCnt. The seconI(d use.d .1 l , thil ages in the

correlation procedure described above.
a

Figure 3.15 shows a comparison of experimental correlations taken fromii the same

:surface (#80), with and without a mask over it. As expected[, tlle correlations at

low angles are unaffected, but as the angle increases the correlation values from the

surface witl; the mask over it are greatly increased. The irprovenelltint is lost at even

* higher angles as the niask introduces eriors of its own as its finite thickness casts

shadows onto the surface.

S
Since the imask increases the correlations in some circumsta.nces (hence removes a

source of errur) adl never reduces thiem, a mask will be placed on all surfaces to be

experimenttally st Ie(lied.
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Figure 3.15: Graph shiowiing the improvement in correlation values obtained a - a
given angle by inasking a surface t~o reduce pattern shrinking. The solid ~ine( Is the
result iorni the surface masked, the dlashed one unmasked. Not~e that the v'ert ical
distance between points showýs a large enhlancemnent.

For the other method, tall, thin images wvere ob~ta~ined by, truncating them In t he x

direction. The reasoning behind doinug this is that the shrinking effect wvill (liMJlace0

speckles further awvav from the centre of the inia-v by greater amounts: r'emnoving~

the speckles with large displaceIKmcitS Will rcduce a source of error in the correlzit 1ios.

One drawback wvith1 this method is that the number of speckles being processedl is0

reduced, and hence the reliability of the results Compromised.0

Iniproving the Reliability of the Lower Value Correlations 4

0

As inentioned above, and Seenl in figure .3.13, there exists a limit below %vhicli, the 0

'true' coirrelatioi coefficient. cannot be easily cli~thiguishiec from small correlationli

fluctuations due to the fmnlito ýsize of the speckle images. The level of this limit, 0

0
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however, can be reduced simiply by knowing that the true correlation is near the

ceIAt:e. So, if the area of the correlation map, over which a maxinium is searched

for, is reduced to a small section around the centre, the maximum found is more

likely to be the true correlation coefficient. It no longer needs to be the largestI peak

in the map.

A further iniproveinent would be to have an aligned set of iniages. by a method such

as that described above, and look only at the value at the center of Lie correlation

mnap. However, in ordet to align the images some degree of correlation must exist,

so it is not possible to know how to position those images, wvlich. when correlated,

prodcLICe a value below tle limit. One possible way to overcome such a handicap is Co

keep a running total of the shift needed, and correlate each image w,%,itlh the previous

one in its set; i.e. the shif" needed to be imposed on the third image to align it

with the first is the sum of the shifts needed to align the second to the first and the

third to the second. This method. however, produced shifts which are inconsistent

with those produced by a direct correlation. 'Plh most likely explanation being that

by thacking the shift using a ctumulative process, any errors will be1 cumulative, so

v. ithin just a few images, the shift produced will be wrong. Since tile 11ts involved

are only a few lxels and must be integer nuinvers of pixels, a fairly large rounding

0 error wvill obviously exist.
0
0

0 -

S
0 --
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Chapter 4

Single Scatter Analytical Study

4.1 The Single Scatter Approximation

SIn this section, the INirclhhoff approximation is applied to the Ilh'iihholtz-INlircllloff

integral to obtain a single scatter approxitiation of the far field imiplitude of the

scattered light. Ali analysis of the range of surface stat-istics thlt give a single

scattering surface is also undertaken.

4.1.1 Derivation

The Kirchihof[ approximation will be used to obtain an expressions for the Single

scatter component of the scattered amplitude in the far field by applying it to the

IIelnholtz-IKirchhoff integral (equation (2..48) from chapter two).

Following fBccklnann[•l1, an expression for the single scatter comnponent. of the scat-

tered light in the far field is derived. The scattering geometry is shown (onc- (I_-

mensionally) in figure 4.1. Light is incident on a point r with wave vector ki and

99
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scatteus with wave v~ect~or k.,; thle positions of tile source and ob~server withI respect0

to the scattering points are given by R, and R., respectively.

k k ......

-.. . ....

.. . ... ....
Fi..ure 4.1 .... oi~igcsatti(opocto ct eel

Given an incden fiel oua.rae 9,tehl ftr cteig01C ~ 'l
. .... .....

writt . ..o . q ato.(..).
1 .........~.... zs . 2 d (...1)

where .. is t...e. free spc Green.s junction:.

.. ~~(42 .0.... .....
. .. ..... .... 0

Th fil at.. the.... surface ..3 adisnrlde tveieqton(..)ar..e
by te Kichhff a~l~rxilatio (e..chapter.two).

....-......... ( .R ..E 0..
..... .... ,:

.... .... .......--- .4 :
. . . ....... .. ..... I.....--; .ý::0

.... ...........
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where 'IZ is the 1?resnel reflection coelficienit, at the potint of icatterilig.

0 Combining equations (4.1 and 4.3) gives

4r +R.)Ei- + (1i- (Z1' 5 (4.4)

and by taking the incident field as a plane wave of amplitude E0 ,

j E=EFoe'k .r (4.5)

0

the normal dlerivative at the surface becomes

0 E, J I kck.r (0.6)

Now by taking the single scattered component of light out to the far held, R, can

*be written inI terins of the k-tbsolute position of th~e observer InI t le farl field, Rol

R, = Ro - r (1.7)

where now kr and k, are identical. From equation (4.?),

) "- ei Enkidr (-1.6)

e* ( -o -r

and

S- --n.K, (- --.k-k ) -(k, (4.0)

•L Finally, sub~;tituting these into equation (4.4), it becomes

• E~o )e 11,\ r• E 0=-/e---Ro )J¶ //in. [7Z.(k, - k8)-(k, ±k,)] eiCk'-k')'dS (4.10)

0representing the single scatter contribution to the bcattered electric field, expressed

in tcrms of the quantities in figure 4.1.
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[ \ae fIciec z Surface Mean Plane0

.Scattering Plane

Y0

. . .... . . . . .

.... .... .. .. ....
....... 0
.. ....... -... ... 0

Figure 4~~~~~~~~~~~...2 T .e ..ea cteiggoerysoig0,O l( 3

Becinan[1J rocedstocleelo) anire pI~oxnlae frm f.qu.ion(410)fo.a.
random~~~~~~~~~~~~~.... roug .uf ..(y vil ie flngh2 L> )whc eoe i

"eg"Fituer as2: Tegnrlsatrn emtysoig0,0 u

Beckann[] prcee A to deeo a ! mor apr ximtdyro euto (4.11)foa

where V = ,- k8, F3 is a geometrical factor anid A0 is the field which would be

reflected in the specular direction by p-polarised incident light if the st'rface wvere a

perfectly conducting smooth plane.

Expanding r anid V into cartesian components, arid ap~plying the geometry shiow~n0
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iln figure '1.2,
(AoF3 .

*~~~~~~ A(0 1, 02, 03) = (2LF)2 f (L~xVYV)~l .. 2

where

V ', = -- (si,101 - sin 02 cos 03)

I., 2r (s n (_,.1:0)

A ,110.2
z -- (cos 01 +cos 02)

0

lBoth F 3 and Au are also functions of 01,02 and 03.

Vaiduity of the Single Scatter Model

0

* A similar method to that eniployed to estimate the irchlihoff validity will be used

here to obta -,n estimate of which Gaussian surfaces are slinooth en(ough to be

Considered as single scaltterers.

An_ intuitive assumption. wvill be made, that double scattering •.r:;t co,.ic into play

(with changing aingle) when the path of the light betweein two scatlerimg points is

in a plane parallel to the mean surface plane. This condition can lbe seen in figure

4.3. The reasoning behind this assumption being that a surface which is not rough
0

enough to have any gradients complying with this condition, will not onily scatt r the

light away from itself, but will have a comparatively large distance between any two

sides ef a 'valley'. This will make it almost impossible for light which is propagating

with a gradient greater than zero to strike the surface again. The technique does

not cater for any diffraction effect which will occur as the distance bet ween the sides

of a valley approaches a wavelength.
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0

Following the assump1)tiloll, the surface gratdienit at. the pmo t. of scattcrinp fh~ be

m1 = tanl(ir/4 - 101/2)(.1)

where 0 is the angle of incidence of the light.

N..

Gi/2+ n0
Figure ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~. 4.3 .lb co. .i.r...ciIef1 ll~~esateigisei

(cf.~~~ chpe two).. As preio.l deemnd ....... of a.ass..u.ttle

witin hre stndad dviaion ofth men. he ondtio ma, tereor........

written..
...... m:. ....../. ...K.. ta....... .1 2 (.... 0. .

..... .

x X .. .. ... ..... ... .. , ... . ..

Fiur 43:Th cndtin eqird ef)r dube catein i eid0t
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* F16.0
Beckmann Solution Applies

5 12.0#239

* 8.0 Multiple, Scaitte ring Evident

#83

* ~~~4.0 ,.Ki

_0 .0 . .0 4 0 .5 .0... ..

Figure 4.4: Surface padi-anieter1, for which thle single scattec \ircl lofaproii oll
B (l~eckmanusoluIon is vd. Boundaries are plcdat. the thlree sI in la rd (le\at io

threshold. The surfaces are plot~ted withl the %vavelcing1,th (i t A =0.6331 jim and for
normal Incidence. Snuiface #8,0 (niot. shiown) lies w~ell withl tile rgioil III whiichi tile

* l~~eckmnann sol utioin applies.

xVliere 99.7%Xl Of tHe surlfa(ce gradieiit-s are wvithlin the Iii iiit.

PA Figure 4.4 it a. ý,ra pli of ecJ~itation 41 ) for ilolniia i ncidenice, vi th th e KNi chihoff

approximnat~ioin validity graph overlayed. Tnc limint. oi t n jointI. region of applhica-

* bility (thw( whlilt area) is roughly the same shlape as and within the utne p~ercent

* unitarity error limit found for the region of validity of the single scatter I~irclihloff

* ~theory by numerical slininlation[( 1 (for all angles of incidence). The close agreement

5between the results derived from thle statistical propos;itlolls albott. whlei the limlits,

of the LKirchhioff approximation and single scattering wvill occur antd the numerical

*results hends a. great deal of wveighit t.o the simp~le mechanism. Ani explanatilonl of time

dloub~le scatter isuhlt~s showni in later chiapt~ers will be developed onl thle basis of this
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The graph also shows that. the lKirchhoff approxinlattion is 101ore widely alllicaleh 0
than the single scatter approximation; this fact. will be exploited in chapter yive. 0

Under an illhminatig wavelengtli of 0.63:3,1 , surface ,LS3 is, in the region of 1Kirdi-

hoff applicability, but not single scattering, whereas surface #239 lies just i isile I h

single scatter limit. Hearing in nmind that. the single scatter boundary line, was plot- 0
ted for normal incidence, at. mlore oblique angles a surface niight cros(1" t he bouindl(ry

and become nulitiply scattering - iii fact, the limit. of equation (-1.16) is ad ceved,

for surface #239, at an angle of incidence of 6.0 ±-.1.t( degrees from nornmal (t lie large

uncertainty due t.o thi errors in a7 and 7). 0

e

4.2 Correlation Coefficient of Two Speckle Pat-
terns

This next derivation follows, to some extent, the work eiUfollrtd by l'eg`r and

Perrn' i 1, the btialttitg point being the n': ..- scattered field, eqit1;"1n (1.12).

The amplitude correlation coe~iicel t of two such fields Ai(0 1,0.2, 0,) and A,(O. • oa)

is •

CA (A1I A 2)(a i =)(A 2A.) (.1.17) •
V(AIalý) (A2A.-1) 0

First the general correlation of the fields (A1 A14) must. be found: 0

(A,;) ( A18)

(A0 T-3 , Ao2 "32 Jjj f':'l?~xl 4V' 2XI+YY1 YI/ 1"2Y 11+"'-]( l2(2)(i.1(-- 11 1S\A, AA~,~,(2L)4 v,,,• •-• , -.

0



* .'4.2. CORRECLATION COPI'CAT''01 1PJ 1':?LL NV' .UY 10)7

* ~whcre V1, 11' and~ V1 ale as III equiat~ions ( 1. l3) and N.het o Sl' 1scrip t I nlirdia I es

dependence onl anugles 01, 02 antd 0,3 , one( of tile requjiredI arrangoenit'iit, a (Snd suscript

2 oti angle's y1)J 02 anid 0,, thei Othleuaratgt '1N19 VIent liecessary.

As incietiotied Ili chapter two, thle surfaces to be examl ed here n aiy be representled

as8 it Zero nlieziil GM at.issia process and(, a G aussiani correlat ion fii 11( imu. 1 ill ti'Ilie

resul t. for an * Z(I'it Meani Gaussian1 Pl)octlss I]-

wher a2  (ý2) i., tliŽ lie j S11dl suface height (thel( valianice of ).anld

* (((x. 112 y~j m 'X) ( (XI - X2 )'+ (T2 11)(.1

if, the" Ga ,sia n ant ocorrelationl function for thle 51 tc.('orre01lat-iOli h'ngt T.

ror large 7,

1,~ 1,~ Y-2) 2. !/2), -r4

a parabolic ap)]rominiat.ioli which is mlore genleral iy applicabl~l thalai the case preseuitc(1

herc - Imnplyi ng t hat. t-his theory nlay also aplyll to surfaces which have correlat ion

funlct~ions thalt, arle no0t, GauIss1ian.

* ~Putting equat ions (4.20 and 4.22 into equat ion 4.1IS) give(S

0(AIA:) =C (41.23)(2L )4
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L •f2 v± z t

x f c'(W.,X I-Vý2 X2) (I via -vl-** 2d~tx
L II-L ' V1'x

-]i-L Civy 1- vya )C- tu -Y2)'d 1Id1Y 2

By applying the variable changes t, = I - X2 , t - , = - Y2, Sx - .rX + X2 and 0

.y= y, + y2 then dxldx 2 becomes 1dt, and dydY2 = idsdt,, so,

AAoFr3, Ao, Fj, 1,
2(V, -_ ) 2

(A4L) 0 - - ().24) )

v2L 2L r 2V V1
x - iL,/Tr -, (/t r 2 + i( ,) dr, 1/If- L 2  ±r L; xJ .

Notice that if x, and x2 are independent, as is the case above, they will forim an

orthogonal coordinate system. Within this system, any lines of constant t ,. will be

seen to be orthogonal to lines of constant sx, implying that sq and t. are indepelident.

The same argument may be used to show t, and s_ are independent. Note that the

variable transformation used at. this stage in reference[31] was nlot orthogonal.

For large a, a.s is the case in equation (4.24), 0

_ U CV (It, j (_-t, Ibt, (1.25) •

Using the result for a > 0,

j e2 ab'dv = exp [_b2 (4.26)
-00 [~4aJ

gives •

A)o, FA o, Ao 2F3 3, _ .1, 2 _ 202

2A " 4(2L)4-

4' JL ei V., -VýT- 7r 2  [(VII + VX2 )2 7
V 3

-V) ds, exp - 160, V-V
__"_"__ I (V[ , +lK Vur 2]

/ ,C'i(v,,-,,'2)2  ds, •" 2 Cxp •) - (1.2.7)
J-vSL l-.o- 2  ' 7I)

a2 /VZ!Z
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Now substituting thC simple result for the remaining integrals

7 " = 2Xsinc(aX) (4.28)

into equation (4.27) yields

(.41A;) 8L2  [-(-V2 , 'sine t V,- V2) L /(4.29)

2____ + 2 + + )2)T2]

su2V I 2 /± 16cr21:I.,.'.
-r r2 L -1 - 2 ) ]

Norial ising as in eq aation (4.17), the amplitude correlation co fficienit of two speckle

patterns is

CA = -(,. 122 siuC [(1')-- -"'2 12,2 vu 1VJ)L ('1.30)

r ,- K ( 2 .2 2 ,_ , -+ 2 + , + .; 2)2 )]

16 , " \ "-1/ "/2 -1"g

Equation (41.30) is a. general result for the two-dimensional amplitude correlation

coefficient; however, the quantity sought here is aln intensity correlation, the aimpli-

tude correlation is not. relevant to this work. Assuming that the speckle amplitude

is a complex Gaussian process, the following relation holdsltq]:

(AI,1I2) = I(AmA:)I (4.31)

This leads to a simple relationship between the correlation coefficient of the intensity

fluctuatoiiis and the amplitude correlation coefficient[38

CI = ICAI 2  (4.32)

Finally, the two-dimensional intensity correlation coefficient is

C1 (01 , 02 , 03 , 01 , 02, 03) = e- 2 (v'-2) 2 (4.:3:3)
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It can be seen from equa~tion (4.33J), that. the correlation coefficient will hlave its l -

maxirrmum when . =.[,2 V - 1,;2 and I-;, = , i.e., when the two arranfgeuVenits

of observation and illumination are identical. It may also be seen that there are. l

various factors which va~ry with only one of V!1, Vl.' or V-•, and that soliiie of t hies~e

factors may be removed p2rely by) L geometric considerati2 s. )

The most osevious limitation to i thptse upo cr equation (-1.33) is to wnly allow 'in

plane' scattering in 1)oth arrangeiments, i.e., set 0a = a= 0, which from t quat this

(4var) means that v. -i•3 = 0. 'nlhe intensity correlationi 1 aecouies:

Cf(acO2, ayb , r 2) = exdpu [-l2(bygeo ,,-t 2)] sinic[2(i11-- -;2 )LJ

ee K2 (bviou l to _ t i (4.:31) 0t

0

lt now makes scnse to force the san e step for the . , s and set 1.').1 = 0,'=.2 : 0. I rl'oll_

equations (4.13) it can be secn that this is easil= a e nlney chiev n be setting 0•= 0.

and &b = •2. This corresp~ondls to ob~servationl always in the specular direction. 1.f

&b = ¢2 = O1 -t 60, the intensity correlation coefficient between two sp)eckle Ipatt~ernis

observed in the specular direction with\2 illumination angles 01 and O1 + 60 is

C O10) = exp (- 0 (cos0 -cs(0 +60))2] (4.3.5)

1 0

and th1 =2.This corresptond to observdeandson ahorlwaysion tlegt ofua dietion Iuface

0

ifI
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A similar result might be expected if V,, = V, = c, where c is non-zero. From equa-

• tions (4.13), this means that there will be a maximum in the correlation, (although

it is not possible to separate out the V. dependence) when

sin 01 - sin 02 = Sill 01 - Si 02 (4.36)

This condition has been reported by Michela 1 for rough surfaces, altliough it. was

presented earlier in another form by Legcr and Perrin[31] (Cf. "memory effect" in

chapter one). It is always true for the specular case.

0 Figures 4.5 to 4.7 examine a few of the possibilities equation (-1.36) offers; each figure

0 consists of a correlation graph produced with equation (-1.3-1), and an associated

0 graph showing the angles 01, 02, 01 and 52. In all cases 01 and 0, are fixed and

01 is the controlled parameter; knowing these three angles, q92 is detereminied with

* equation (4.36).

The first of the figures, figure 4.5, shows the specular case, 02 = 01 anld (2 = (PI, the

reference being at 0, = 10 degrees; the shape of the cur've is that given by e(Iat lionl

(4.35).

* Figure 4.6 shows the case where 01 and 02 are fixed at 10 degrees and 0 degrees

0 respectively, 02 is determined, for a particular 01, by equation (4.36). As may be

expected from consideration of the V, - VZ2 term,

* (cos 01 + cos 02) - (cos 01 + cos 02) (4.37)

the correlation drops off at a slower rate than in the specular case showi in figure

4.5.S
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C1 ( 0 1, 0 2,'01,2)
1.0

0.8
0

0.6

0.4

0.2

0.0 L I
0 5 10 15 20

/0
90

60
600

30 1
SI I - " I/I0

-90 -60 -3 30 60 90v /o
~30L 41

-60-

-900

Figure 4.5: Top: C1(01, 02- 0, ¢2) plotted for the specular case with the reference at
10 degrees (02 = 01 = 10). 0
Bottorn: 02 is determinied by equation (4.36), in this case 02 = € 1.

The last figure, figure 4.7, shows the case where the reference image is in back- S
scatter, i.e., 02 = -01; 02 is given, for a particular 01, b3 equation (4.36). For 0

0

0
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C1 (01,024,02)
1.0

0.8

0.6-

0.4

0.2

0.0 L.......___ L.. W

0 5 10 15 20

J/0

m/0

90-

60- 02

30-
() 0=0 - o

-90 -60 -30 30 60 90
* 00

00

_-90

Figure 4.6: Top: C1(01, 02, 01,0~2) plotted with the reference at 01 10 degrees, and
* 02 =0.

Bottorn: 02 is determined by satisfying equation (4.36).

0

1--10 degrees, V~,
0

0.
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C1 (0 1 ,0 2 ,A1 ,02)

1.0-

0.8

0.6 0

0.4-

0.2

0 5 10 15 20
/o /o0 -----

90/

60 02

30-
l i t ! l t_.L l l.,Eel,_L_

02 01/ 0

-60•

_900
0•

Figure 4.7: Top: Cl(01, 02, 0 1, 02) plotted for the reference in back-scatter (0 =- 10

degrees and 02 = -10 degrees). 0
Bottom: 02 is determined by satisfying equation ('1.36).

is identical to the that for the specular case, but nlow the variation in V,,

cos €, + cos 2(4.:.)

._0
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is even slower.

0
These results are extremely counter intuitive. As discussed in chapter one, the high-

est degree of correlation might be expected in the specular arrangement. However,0
the slower decorrelations, arising because of the slower variations in the V terms,

may be understood by considering the paths the light travels in each case. For the

last case presented, where the reference is in the back-scatter direction, the angles0
between the various paths are small and, since it is the angular difference which

counts, will therefore introduce less of an angular ',ecorrelation than in the other0
cases, where the angles between the paths are greater (being largest in the specular
case).

0

0 In plainer terms, the directions of incidence and observation are all very similar in

0 the back-scatter case. Changing these will obviously affect the degree of similarity,

* but not to a. major extent. Compare that to where observation is in the specular

0 direction - the directions are not exen similar in the first place, and any change

"0 Qmakes a large difference.

0

4.2.2 Comparison with Experimental Results

Figure 4.8 is a plot of equation (4.35) with 01 = 10 degrees, which applies to correla-

tions taken at points, compared with experimental results, which necessarily involve

spatial averaging with the equipment used. It shows that the experimental correla-

tions are a lot lower than the theory predicts. The error on each point is predicted

to be around ±5%, being the statistical uncertainty on a sample of 400 speckles,

S1/V-(i400).
0

0
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1.0

0.8 +÷ +

0.61 4+÷ +
0

+0
0.4 e

0.2 +

+

0.0 1 +÷0/- I 0
0 10 20 30 40

Figure 4.8: Equation (4.35) (solid line) plotted with experimental correlations (+'s)

taken from surface #80 with incident light at 10 degrees and s-L)olarised and observed

speckle patterns in the sp)ecular direction - also s-polarised. The wavelength, A =

0.633jm,.. The erro, on each point is ±5%. 0

One major difference between the theoretical analysis and the experimental approach

is that equation (4.35) produces the correlation coefficient at a point, whereas the

experimental situation necessarily deals with the correlation of an area the size of

the camera's CCD array. 0-

To cope with this, it is necessary to abandon equation (4.35) and turn back to

equation (4.33). As this equation provides for scattering away from the specular 0

direction and out of plane scattering, it is possible to find the correiation coefficient

at any point in space, not just at the point in the specular direction. By averaging

equation (4.33) over the area of the CCD array, a result similar to the experimental 0

observations should be obtained.

0-
No attempt has beenr made to average equation (4.33) analytically. For the results

to be shown later, the equation was evaluated for each pixel in the CCD array 0-
0k
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contributing to the portion of the speckle p)attern used to ob~taiin an experililnetal

result. An average of all evaluations gives the correlation coefficient. t~o be comp1 ared

to experiment,

Figure 4.9 shows the relationship between the coordinates of a point. on the CCD

array, (p, q), and the angles used in equation (4.33). This relationship is explicitly

statedl as equations (-1.40).

and ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~C teage0,0al0.NtthttecneofteC)arayrrbtndy a
angle~~~~ of ..... .~ th .ensraenrn

...0 .......
si .... ... .. ... (4.40): I :;.x. ...

where.. ..

.. ..... ..... os.I. ...



0-

118 CHAPTER 4. SINGLE SCATTER AN.ALYTICAL STU' "-DY

z- = dcosO1 .- psinOu

R = x2 +q 2 + z 2

0

The numerically averaged result is compared against experiment in figure .1.10. Tilis

graph is identical to figure 4.8 in all other respects. It can be seen that by averaging

equation (4.33) a result very close to the experimental observation is obtained.

1.0
Q6o,01) +

0.8 •

0.6 •

0.4 ÷+.

0.2 +
+

0.0, + . 0 0
0 10 20 30 40

Figure 4.10: Equation (4.:33) averaged over the aica of the CCD elcient. (solid
line) plotted with experimental correlations (+'s) taken from surface #80 with the
reference a.t 10 degrees, incidence light is s-polarised and observed speckle patteins
in the specular direction are also s-polarised. A = 0.633tnm.

Having now determined that it is necessary to average equation (4.:33) to gain a 0
similarity with experiment, it is desirable to examine the effect this has on the

various arrangements discussed above and graphed in figures 4.5 to 4.7. 0

Figures 4.11 to 4.13 are the equivalents of the above mentioned graphs but now
using equation (4.33) averaged over an area around the observed direction.

As expected for the specular case, the correlation at any point is generally less 0

0h
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* CI (01,02,014,2)
1.0

0

* 0.6-0

0.4

0.21

0

* 0.0
0 5 10 15 20o /

* 90"0

9 /0
* ~60~

30°002

/I I I I I I I I

-90 -60 -30 30 60 90

*-30- j/

-60[

090

Figure 4.11: C0(01,02, i, .-2) (a-veraged) plotted for the specular case with the ref-
* erence at 10 degrees and all angles satisfying equation (4.36).

than in the unaveraged situation. For the back-scatter and fixed reference case,

0 the correlation coefficiel, is 7ero apart from at the point, where the two angular

arrangements are the same, where it is one. The resolution of this curve is one point
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CI (01,02, o,02)
1.0-

0-

0.8 0

0.6 -

0
0.4-

0.2 -

0.0- . I , 0
0 5 10 15 20

90e

60 4-2 0

02 =0 30

-90 --60 -30 30 60 901 •IO

I 0

-90 L

Figure 4.12: C 1(O1 ,02,, P92) (averaged) plotted with the reference at, 01 10 de-
grees, and 02 = 0. All angles satisfy equation (4.36).

every half a degree - if a finer resolution were used the spike might be expected to

have an angular width about that of a speckle.

The reason for the reduction in the correlations is that the terms in equation (4.3:3) 1
0

0
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CI (01,020 • ,¢2)
1.0-

0.8

0.6
II

0.4

0.2

0.0

0 5 .0 15 20

9601 -

0 2___ _ _ 01/

Figure 4.13: C1(O1 ,02, Op, 2) (averaged) plotted for the reference ii back-scatter
(0, z 10 degrees and 02 = -10 degrees). All angles satisfy equation (.1.36).

which varied slowly to give the larger correlations in the previous section, in partic-

ular 1.2, vary rapidly with 02 while 01 is fixed, as is the case when averaging.

It is interesting to note that figure 4.12 and figure 4.13 are now in line with the
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intuitive argument presented in chapter one, justifying the use of the specular ar'-

rangement when considering experimental correlations.

4.3 Results

Figures 4.14 and 4.15 show the exlperimentally observed correlation coefficients for

surface #80, plotted with the results of averaging equation (4.33) as described above,

for situations where incident and detected light are both s-polarised and p-polarised 4 -

,espectively. Although equation (4.33) does not take any polarisation effects into O

account, it is obviously adequate for predicting the observed behaviour. O

1.0 - =20 011 20°i- 01=30° A 01400 01509 *1Q, 0 oOdo

0.8 0

0.6 1

0.4 - n

0.2-

L0
0.01 -9 0/o •

0 10 20 30 40 50 60

Figure 4.14: Experimental intensity correlations for surface #S0 with incident and

detected light s-polarbed. Curve labels represent the (incident) angle at which the 0
reference was taken. Observation is in the specular direction and A = 0.633/un. The

solid curves represent the results of averaging equation (4.33) using the experimental 0
parameters. The symbols are experimental results.

As the measurements of the surface parameters obtained had some margin of (Ioulbt -

associated with them, figure 4.14 has been regraphed in figure 4.16 with the aver-

S7
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1.0 01=d 1 o0 il =20° o 1=30° 1=400 01 =5&SC(Q0, Od)

*0.8

0 0.6
0I

• 0.4-0
0.2-

* 0.01. A/o
• 0 10 20 30 40 50 60

Figure 4.1.5: Experimental intensity correlations for surface #80 with incidept and
* detected light p-polarised. Curve labels represent the (incident) angle at which the

reference was taken. Observation is in the specular direction and iA =- 0.6331,m. The
solid curves represent the results of averaging equation (4.3:3) using the experinmental

* parameters. The symbols are experimental results.

aged equation (4.33), for the extremes of the error ranges in the R.NI.S height and

correlation length.

• Fbr the sake of completeness, the average intensity plot for surface #80 is given l

o in figure 4.17. Both the incident and observed light are s-polarised. As may be

expected, as the angle of incidence moves further away from being normal to the

surface, the amount of light which is specularly reflected (as opposed to a.ny other

direction) increases.

As a matter of interest, analytical and experimental curves are ii.;o plotted for

surface #239. This surface is predicted to show double scattering more evidently

as the angle of incidence increases. For the co-polarised situations, figures 4.18 and

4.19, theoretical curves as above are plotted.
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1.00
C(0,0) 

-1-

0.8

0.6 0

0.4 .

0.20
0.2 0/0

0 10 20 30 40

Figure 4.16: Equation (4.33) averaged over the area of the CCD element plotted 0
with experimental correlations (+'s) taken from surface #80 as per figure 4.10 The

grey area reprebentb the region of uncertainty in the mcasurcment of the surface
parameters.

The agreement to the theoretical curves is not as good as it is with surface #80. This

0.08 0

0.06 Eu ..

I,-.-

-- EME MENE

S0.04 -L

0.02 -

0

0.00 1 0 20 30 40 50 O/0

Figure 4.17: Averaged intensity plot for surface #80 with observation in the specular 0
direction. The illuminating light has wavelength 0.633jm and it, and the detected
light are s-polarised.

S... . , , - •:', • '"p t '• •: '' l' i' i I'• lr: -r • n i-.0 ,
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may be exp~ectedl as surface #239 is boedering on the margins of b~eing a multiply

scattering surface. It must be stressed that due to large gradients involved, the

graphs can be misleading: to see the discrepancy between the experimental and

analytical curves in its true light, the vertical distance between an experimental

point and the theoretical curve must be considered.

1.0 =20 01=10 0 01=200 01 =300 01 400 01 =500
C(e 01) X3

0.8 t

S, 0.6 F *.I

0.4

0.2

0.0 6/0
0 10 20 30 40 50 60 °

Figure 4.18: Experimental intensity correlations foi surface #239 with incident and
detected light s-polarised. Curve labuls rpreesent the (incident) angle at wvhich the
reference was taken. Observation is in the specular direction and A = 0.6:33[,m. The
solid curves represent the results of averaging equation (4.33) using the experimental
parameters. The symbols are experimental results.

Now that some double scattering is possible, cross-polarised correlations may be

obtained, as shown in figures 4.20 and 4.21.

The cross-polarised component is very much less intense than the co-l)olarised one, so

much so tha.t IRim[41l reported that no depolarisation was evident in scattering from

this surface. For these results, long exposure times were required to produce speckle

images with pixel values in the range specified in chapter three. The exposure time
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1.0 =20 01=i0vF OV I2A0 O 3d'O0 1 -1=40P 0 1 =509
c(o,o1 )_

0.8

0.6- A,
* 0

0.4 -"

0.2- A A
A +

A +
0.0 0 /

0 10 20 30 40 50 60

Figure 4.19: Experimental intensity correlations for surface #239 with incident and
detected light p-polarised. Curve labels represent the (incident) angle at which the

reference was taken. Observation is in the specular direction and A = 0.63:31:Im. The
solid curves represent the results of averaging equation (4.33) using the experimental
parameters. The symbols are experimental results.

was greater than 30 seconds for most of the data shown, coming close to 2 minutes

for the higher angles. Although the large exposure times allow large amounts of 0

ainbient light to enter thc camera., this is subtracted when the speckle images are

processed. Further problems may be introduced experimiental apparatus, with small

amounts of detected cross polacised light, as discussed in chapter three.i0
One notable feature present in the cross-polarised curves is the existence of extra

humps in the correlation at certain angles away from the main peak. The shapes of

these curves are explained in chapter six.

The behaviour of the extra correlation humps in figure 4.20 is interesting, each

individual curve has peaks at around three degrees either side of the main peak, but 0
the value to which these rise varies, becoming lower with higher reference angles.0
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1.0 01=20 01=10 1 = 200 l300 e0 = 4d° o, =50P

0.8 -

0.6

0.4-

0.2-

0.0 --- 0/0
0 10 20 30 40 50 60

Figure 4.20: Experimental intensity correlations for surface #2:39 wit h incident, light
s-polai ised and detected light p-polarised. Curve labels represent tile (incident)
angle at which the reference was taken. Observation is in the specular direction and
A = 0.633jtm.

Figure 4.21 shows similar behaviour, but with the extra correlation humps being

more evident, at the larger reference angles. At the lower angkes, however, the

correlation coefficients seem to fluctuate randomly - no clearer picture is given if

the curves are examined separately.

Figure 4.22 and figure 4.23 show averaged intensity plots for surface #239, for the

case of observation in the specular direction, for s-polarised light incident and s- and

p- polarised light detected respectively. The relative scaling between these graphs

has not been preserved, the s-polarised experiment requiring a neutral density filter

in the system to attenuate the amount of light incident on the surface.

As can be seen in the figures, as the angle of incidence moves away from normal, the

amount of co-polarised light scattered into the specular direction increases. Con-
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1.0 01=20 01=100 01=2d° 01=300 01=400 01=50P

Q(0, 1)

0.8 -

0.6-

0.4

0.2 - J0

0.0 __ __ __ __ _,__ __ __° 00/0
0 10 20 30 40 50 60

Figure 4.21: Experimental intensity correlations for surface #239 with incide'nt light

p-polarised and detected light s-polarised. Curve labels represent the (incident)

angle at which the reference was taken. Observation is in the specular direction and

A = 0.6331tm.

sequently, the amount of cross-polarised light (already small) decreases, hence the

0.20 0

""-05

0.10

0.05

0.00 0/o
0 10 20 30 50

Figure 4.22: Averaged intensity plot for surface #239 with observation in the specu-

lar direction. The illuminating light has wavelength 0.6331tra and it and the detected

light are s-polarised.

.0__-
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e e* - 0.02 - as 00%0

0.01

0.00 00 /
0 10 20 30 40 50

Figure 4.23: Averaged intensity plot for surface #239 with observation in the spec-
ular direction. The illuminating light has waveleiigth 0.633ion and is s-polarised.

SThe detected light is p-polarised.

long exposure times needed to obtain the speckle images.

5 Since there are no obvious side lobes in figure 4.22 or figure 4.2:3, it seems that

* the correlation of speckle patterns is a much more sensitive probe of the multiple

scattering regime than is the average intensity. This final piece of evidence offered

up by scattered light from surface #239 (that the surface only showvs ;lighit evidence

5 of double scattering), lends a great deal of support to the simple model near the

• start uf this chapter which predicted such behaviour on the basis of equation (4.16).

• -

S
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Chapter 5

* Double Scatter Simulation

0

5.1 Theory

0
The Kirchhoff approximation will be used to obtain an expression for t lie double scat-

* ter component of the scattered light in the far field by applying it to the Hlelmholtz-

Kirchhoff integral. This method was employed by Bruce(6l for one-dime8:;iolal stir-

*faces and it seemed the nmost likely candidate for an extension into two dimensions.

Light incident on the surface is treated as being scattered into two states - one

in which the light leaves the surface, and the other in which the light strikes the
surface again at a different point. Of the light which impinges on the s0rface again,

some will scatter and leave the surface and some will strike it a third time. LightS
continues to be scattered from the surface until it has all escaped (or in the case of
a non-perfect conductor, been absorbed).

* Bruce found tht,• when considering perfectly conducting surfaces for which the

*Kirchhoff approximation can be applied, such as those discussed here, over 97%

5 131
0
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of the incident light had left the surface after tile second contact[221; the anmouzit of

triple (and higher) scattered light gave a negligible contribution to the final scattered

field. 0
0

Only the single and double scatter colnponents of the scattered field will be dealt

with in the present study. The small power loss evidenced with this approach was

deemed an acceptable price for extending the calculation to deal with two din-

sional surfaces.
0

5.1.1 The Single Scatter Contribution

The equation to be used for the single scatter colit ribution is e(uat ion (.1.10), derived

in the previous chapter. It represents the contributionl to the electric field due to light

which only interacts with the surface once. Obviously, for surfaces which possess

steep sided features, light will scatter from more than one point before it. timnlly

escapes. i0
5.1.2 The Double Scatter Contribution

Following a procedure similar to that used to gain the single scatter component., an

expression will be derived for the double scatter component of the scat.tered light in

the far field.

The nomenclature to be used is shown in figure 5.1, the subscripts 1 anldt 2 represent 0
arbitrary realisations of functions at points 1 and 2, e.g., n1 is the surface normal

at point 1, and is a function of the coordinates of that point.S@0

0
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*~ k0

R, -d

*k 2
r02

Fig,,:tc 5. 1: Geometry for the double scatter coniponenlt of the Scat wemd field.

5Gven anitI itci dent, field( on a s urifa ce, Ei, t lie field( a fter s:c at tecrinug onice can iiC beri t teOn,

5 from equation (2.48), as

£ 1 L) 1 (25.1)

and the double scattered component of the scattered field can be writ tenit s

1 '23 0 E2 ,(.2

where, as previously, V, is the free space Green's function,

R,

S ~The fields at. the surface and their nornia-l dlerivatives In equation (3.1 and eqiat ion

5 ~5.2), can be given 1)y t lie Kirchhioff app)Iroximfation, such thiat

E1 , = (I1+ E,1D
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OnE2 On(

OE2  ( - R E2) O--
0112  011-7? 2)

where 1l and R?2 are the Fresnel reflection coefficients of the surface at. poilts 1 and

2.

Combining equations (5.1, 5.2 and 5.4) leads to an expression for the double scat.-

tered field depending on the incideut field,

+1-R2)q' 23 (1 + 7•")E 1 n'-'•'anc 1 --7",7j.,) On 1 d->1( 1._g,~2 (55-. [( I~i f 2  - -11'2 U.'2  O

Taking the incident field as a l)lane wave of amplitude E1, as be!ore

E'l = Eu iki'r, (5.6) •

and the normnal derivative at the SUrface at ap)ut I I)t:'wbOiiw('s

-I -= 7 L' l.kj( ik'r, (.5. 7 )
Ona,

Also, V'12 may be written from equation (5.3) as

cikoR 2Y'•2 12 (5.8)•

and by taking the double scatte,'ed component of light out to the far field and so

expressing R3 as

R3 = Ro - r2(5.9)
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then (observing that ko and k3 are identical),

0/'23 (/Ikofo k3 - (510)

and

ŽiŽ~~~..iCnik-0 (.kRO\ i~k.3.r2 (.1
5n.2  k No

The renai iii ug rtiers of equtation (5.5) are derived by expandihig equal joil (.-8) inito

cartesian coord iniat.eC, ("i. /,R. .- .) Y2 - YI) 2 + (-2 2 N. 1ppyin

the operator (2.1:3). Their li hal forms are

all, (C -?iD)•,1•

1 .2 = (-A + 713)6 2  (5.12)
On2

--,,2 = 1k, ,) + 2,AD - 33AC + BD] ,,.

where

A=
R-2 .P2 

-

13 n2.k2

C - .R2  (5.13)

D n1 .k 2

Thus, for a given arraigenment of illunination and observation, and with a known

surface profile, only the reilection coefficients remain to be determined in equation

(5.5). With a perfectly coinduLctinlg surface, the reflection coefficients cdni be set. to

+1 or --1. for p-polarised or s-polarised incident light respectively: this is due to a

perfect conductor being a perfect. reflectort391 . For the one diniensiomal case, where
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no change in I)olarisat wit oCCurlS Upon scattering, this is all that is required; but

for a two dimensional surface - where the polarisation can change upon scattering

out of the incident plane -- changes in the reflection coefficionts must be taken into

account.

5.1.3 Including Polarisation

Following MitzncerlI' and Beckna.tinlct', the electric field E can be split. into two

orthogonal components, one which is s-polarised E-, and the othlir p-1)o1arisc'd

E-. The scattering geonctry i.,, shown in figure 5.2. The vectors e- and e+ are

unit vectors representing the s-polarised and p-polariscd electric vector aligniiwrnts

respectively. x, y and z are orthogonal unit vectLors dIescribinlg the coordinate systeni

used. The scattered field can be) expressed in terms of the incident field as

[E - H J[j- F- E-

-.,ere E- and Et is the incident field, E; and E+ the scattered field, and the I' s

are the reflection coefficients; subscript jj indicates the component of the reflection

coefficient which does tiot change polarisation and I indicates the componett of 0

the reflection coefficient which maps one pola-risation state to the other. These 0
reflection coefficients are effectively the Fresnel reflection coefficients (K- and P±+)

transformed from the local scattering plane into the world frame. Note that in the

world firame the s-polarised and p-polarised electric vectors lie perpentdicular and

parallel to the plane of incidence - once scattering is considered friom a local point •

of view this is no longer true, hence the coordinate transtorms. These new reflection -

coefflcents are derived by Mitznerl"it

l'y= R- cos/3, cosd .4- R+ +sin/)1 sinl/)3 "0

!0
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et

k i z ean Surface Plane

0y

e- k0/

Figure 5.2: Geometry for polarisation showing the orieutation of the electric field
coordinat• systeims within the world frame.

* I = R- sin /3i sin/I3• + Ri- cos/3 cos -

IF- = -P• -sin 3i n o scos i3 + cos/Ji 1si1!/3s (5.15)
eI

IF+ = -R.- cos /3,i sin /3s + R,+ sin /3, cos

--f and /3P are the ang!cs between the local scattering planc and the incident and

scattered polarisation coordiima. ? systems respectively, as shown in figure 5.3, and

can be defined as

cos/3o == t1 .e- (5 16)

o

O i •= - q•e (5 ,17)
0
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+i 0

....... 0

Figure 5.3: Relative orientation of the electric field coordinate systems with roslpect
to the local scattering plane.

for x = is, wher~e

jn x kA

is a unit vector along the intersection of the local scattering pline wvithi the waive

fronts, as shown (aloog wvith q,,) in figure .5.4, and ex is the (lirect ion) of the s-

polarised component of the electric held. Expressed ini world coordioates,

e3 = y (19)

and

e- (k,1 y)x + (k, x) y (5.20)
.7 V1 , ( k .,.z )

The process of keeping track of the polarisation can be thought o, as first a trans-

formation of the (e7, e') systemn into one which lies in the (t1 , qj) plane. This is

followed by scattering the light aiccording to equation (5.1) or (.5.2). Finially the co-

ordinate system (which now lies in the (1i, qs) plane) is transformed t~o the (e-, e+)

arrangement. The overall effect IS a ch~ange in p)olarisationl.

A limitation must nowv be inliposeul: the Fresnel rcfiection coefficients Only a~pply to

a specuilar reflection from a flat plane, aind so dihe ab~ove procedure will uot work if
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0

0

0

0
. : . ... : . ....... : . . ..

.",*iil~~i Inciden Wav
0

SLocal Plane of Incidence Plane ______

Figure .5.4: Deta~il of the relatlnioship) between the electric field coordinate system
* and thle local scattering jplane.

ki, k8 and n do nlot lie within the same plane. When they do, t, --= - t, and the

polarisation is (:orrect. Having imposed this linitation, the polarisatioi (:hange no

0 longer depends explicitly on the surface normal, and t may ixi rewritte'n in terms of

the incident and scattered wave vectors:

kxk
* t 1. k, x k,I (5.21)

* A model is n~ow nee'ded to cope with light scattered out of the local plane of inci-

S~dence (a diffraction effect supported by the IKirchlhoff method used). If any light is

.. ... .
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scattered in some direction k,, from a scattering element, with incident light in the

direction ki, then the existence of a virtual plane, oriented such that thle scattered

light is specularly reflected, may be considered. The polarisation of the light is then

given, as above, by applying the reflection coefficients on this plane with t, and t3, as

in equation (5.21). The actual orientation of the virtual plane is never needed as k

and k, are already determined. This approximation to whatever polarisation chang~e

is occurring is justified since the surfaces to lbe studied here mnust conform to tile

Kiichhoff approximation, i.e., most of the light scattered from any point will lbe as

if from a plane mirror. A qualitative argument successfuilly explaining polarisat ion

changes in enhanced back-scatter has been based on a similar assulnption~l i].

Clearly it is neccssary, fromn equation (5.1-1), to work out b)oth the s- anu l)-lolarised

components of £2 (cf. equation (5.1)), lbcfore a single realisation of £3 (equation

(5.2)), be it s- or p-polarised, can be determined.

0

5.2 Implementation

0
Given that the single and double scatter components of the electric fieldl are now

realised, thle, total scattered field is simply thle suim of the two comnponients.

The angular intensity correlation, thle quantity sought here, depends onl two reahisa- 0

tions of the intensity, I, I(k,. k3) and 12 = J(k', k'), taken from N real isat ions

of the surface, and is obtaiined using equiation (2.15) from chapter two:

0

A11 Z-1
N IVU N (522

0
0
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The total electric field can be expressed as an intensity (defined as the energý -rossing

a unit area inl unit time) by:

I = -EE" (5.23)
47r

Examining equation (5.22), it can be seen that any constant factors in 1, and hence

(from equation (5.2:3)) in the electric field E, may be discarded whern only considering

the correlation. Note that this only applies to factors common to both the single

and double scatter compolnents of E and I - their relative scaling must not be

disturbed. This removal of all terms constant. with respect to angle means, especially,

that the correlation does not depend upon R0 , a term which (as it is the position of

observation in the far field) tended towards infinity.

5.2.1 Discretisation for Computer Modeling

The integration over the surface in equations (-1.4) and (5.5) shall be performed

simply by multiplying the value calculated at the centre of a unit. by the area of that

unit, as shown in figure 5.5. This makes discretisat.ion of the equations simIple; it is

achieved merely by changing the integral signs to sums over the x and y directions

and ieplacing dS with , .y, the area of the unit. Obviously this is a very simplistic

approximation to the actual integral - a more accurate calculation might extend

Simpson's rule into two-dimensions.

It is generally deemed necessary, while considering discretisation of equation (5.5)

and all associated parts, that the phase terms present, namely t-ik,.ri, .ik3.r 2 and

eikoR2, must be viewed with respect to their variation. In order to maintain a realistic

idea of this phase over a discretiscd surface, its variation must be much smuallei than
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f(x) I •

0

L ASx 
-

Figure 5.5: Numerical integration performed by taking the mid-point of two reali-
sations of a function and multiplying it by their separation.

27r between two consecutive surface points. Taking just the k0 R2 term, as this varies 0

fastest, the condition can be written as

A(ko0 R 2) <2 (5.2.<)

where A indicates the change over consecutive points. Repiacing k0 by 2r,/A. the

condition becomes

AR 2 << A (5.2.5) 0

The largest change in R2 will be of the order of the distance between points on

the discretised surface, so to track the phase reliably across a discretised surface

there rnust be many sample points per wavelength. There is, however, a prol)lem

with this approach: the discretised surface will have so many points on it that

the calculation would be unrealistically slow; also, the fast shading algorithm (see

below), would require .o much memory that it would not be possible to implement
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it. The integration will therefore be performed with a grid separation controlled by

thc correlation length of tihe gradient of the surface, this being thc c'1 half wvidth of

the correlation function of the gradient (from equation (2.30)):

Cs's,(t) = I - 2) eC (5.26)

When this is equal to c-1 , the value of t = TS,, the correlation length of tei gradients

(found by Newton-Raphsoi. iteration), is approximately given by)_

Ts, .z 0.5110.1r (5.27)

i.e., for a surface wvith a correlation length r = 4.31 A, surface points will be separated

by 4.31A*0.51104 = 2.20A. If 20-18 points are available, then the surface side should

be x/P24- × (2.20A) 2 = 99.74,\.

Surface segments spaced by this distance will still have similar gradients, andi hence

each segment may be considered to be locally flat. The distances between points on

a surfacc. will now constitute a. random distribution (cf. Monte Carlo method). It

can be seen from figuie .5.6 that the phase spread over an enseml)le average of 100

surfaces is relatively uniform, implying that it does not need to be tracked on a finer

scale. The randomness of the surface points is enhanced by adding a small random

offset t.o each x and y coordinate (which is linear and up to a maximum of A/10)

and interpolatimng to find the correct z coordinate on the surface; i.e., the surface

realisations are not confined to a fixed grid which may impose its own stiucture onto

any results.

To perfo-ii the integration, a sum over flat surface segments must be conducted (a

requirement. of the 1Iirchihoff approximation). Somehow, these flat facets must be

Sm
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No. of samples
x10 5

5.0

4.0

3.0

2.0

1.0V

1 0.0 I I I
0.0 0.2 0.4 0.6 0.8 1.0

L Phase / X
Figure 5.6: The distribution of tilL- phase differences between two points binned .50
times over the wavelengrb, on a 100 x 100 wavelength surface consisting of 20.8•
points, with parameters or = 1.42A and T = 4.31A, over an ensemble average of 100
surfaces. Point to point shading has been taken into account.

obtaincd from the data available, namely a square grid of surface heights (given the

nature of the surface generation technique which relies on fast Fourier transforms --

see below). In actual fact, the grid must be disturbed to create a random d(istri butio 10

of points, but for the purposes of this explanation a square grid will be considered. 0

Since it is unlikely that four independent points will all lie in a flat plane, each 0
'square' of the surface (defined by the four corner points), must be split into two

triangles, both of wihich are uniquely defined planes, as shown in figure t5.. This •
complicates the summation p~rocedure slightly as it is nowv necessary to cater for the•

two sub-triangles within each unit.•
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Figure 5.7: A discretiscd two-dimensional surface -- each facet is a flat p~lane.

The &S,,q• required for a triangular unit can be defined as

=AxAy (5.28)

ZnL

the area of a surface facet with a surface normal n (n: is the component which lies

along the z direction) on a triangular base of area AxAy/2. The p~osit~ioiis of the

mid-point of each facet (see figure 5.8) are given by averaging the p)ositionls of the

three corners, for facet A the mid-point is

1

3.

... ........ .. .

A 2 Ay

3A
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z

P "3
Y0

P0

/A y

Figure 5.8: Geometry for calculathig the positions of surface facets.

and for facet B0

B,_'jýP+4 = Piý ± E-.ŽN
3 3

3 3
B - P "+P --+P

where the points PI, P2, P3 and P4 are four realisations at the corners of the square

unit. The surface normal for each facet can be derived by taking the vector cross

product of two sides of a facet:

nA = P2 P1 X P2P3 = --AY(Paz -P 2 JX±+A-V(PI - P2 .)Y±+AXAYZ(5.:31)

flB = P4P3 x P4P1 = A~q(P 1 . - Px- Ax(P 3 , - P4j)y + Ax~yz (5.:32)

Of course, these vectors still need to be normualisedl by dividing each component by

.n-. -

I °• •

-• • .. , | .
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As mentioned above, the randomness of the distribution of points on the surface

needs to be increased, this is achieved by shifting the corners of each square by a

small random amount. The surface normal may still be defined by a cross product

of two vectors describing the sides,

ii.A =a xb. =aP2P x P2 P3

1lB = aB x bB = P 4 P3  -PP (5.33P)

although the solution is not so trivial as before, it is nevertheles:s a siinple (-alcullation.

The most significant complication introduced 1)3' randoomising tilie surface nodes is

that the surface area d(IS of each facet needs explicit calculation (",e figure 15.9), not.

particularly difficult in itself, but. meaninmig one more quantity to keep track of. The

area of a triangle described by two vectors joined at their bases is,
111 1

dS =7bc = 7bja- abj (5.3-1)

where

Sa b

and a and b are two vectors describing the sides of the facet as in equation (5.33),

assigned such that b > (a. Note that c may be calculated via the (lot l)ro(luct of a

and the normal to b, but this method requires a normalisation and hence a square

root. Bearing in mind that calculation speed is of the essence, the above niethod

was chosen as it avoids the slow square root and uses a number of faster operations.

By this point in the development of the theory, it is not practical to write the

calculations as a single equation or even just a few equations. However, this is of no

concern when considering that it will be implemented on a computer - in fact it is

an advantage to have expressed the theory as many small parts.
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0
/I a

,' 
b

,, 
•

Figure 5.9: Geometry for calculation of area between two vectors.

5.2.2 Calculating Shaded Areas

So far, no allo-wance has been made for the effect the surface height variation has in

terms of casting shadows; all points on the surface have been assume(1 illuininated

at all times. Clearly, for steel) sided features of the surface, especially at. high (away

from normal) angles of incidence, there are going to be portions of the surface which

are in shadow. The inverse of this also applies: points on the surface winch cannot

be seen from the observation direction cannot directly contribute to the scattetred

light in that direction.

In the double scatter case, the effect of point to point shading must also be taken •

into account. Light cannot reach a point on one side of a hill from a. point on the

other side - this must be accounted for. Note that if the surface is d(scret.ised •

into N points, then the point to point calculation will have to be performed from 1 I

point to N points N times, i.e., N' point to point calculations. It is vital that this

calculation is complutationally as fast as possible. A direct ray trace, possibly the •

most obvious method for determining shaded regions, is too slow to be practical. •

Fortunately, it is not the only solution available. •
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Cousiderilig, for now, a one dimensional surface, figure 5.10 shows the sheaded rcgiolIs

of that surface when light is incident on it. The vector s is defined as thiat which lies

Incident Light

" " " ½ N' '";

.. ......... . .-

Shaded Illuminated

Figure 5.10: Shaded regious of a one-dixllensioInal surface die to colii ntiated incident
light.

in the direc! ionl of the line joining the last illuminated poiflt with the current point.

Starting at the left side of the discretised surface, as each poinlt is stepped through,

s is redefined. If a point lies in an illuminated area, then s will simply be the vector

joining two consecutive points (cf. si). If, on the other hand, the point lies in a

shaded region, then s will be the vector joining the start of that shaded region with

the current point (cf. S2). To determine if the current point is illuminated or shaded,

the dot product of s and the normal to the wave vector of the illuminating light, In

(as shown in figure 5.10), is taken. If

sam > 0 (5.36)

then the curren-t j)oiilt is illuminated and the tail of s is redefined as this point,
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otherwise the point is shaded and the tail of s is left alone.

For illumination to the right of the surface, the direction the surface is processed inl

must be reversed, i.e., stepping starts at in ghlt hand side and the definition of ini

is such that it still points 'up'. To calculate observed points, 'illumination' ca., be

considered to be from the observation direction - 'shaded' regions are then areas

which are net observable, and 'illuininated' regions, areas which are. Note that this

algorithm only touches upon each surface point once.

As long as the observed dir(ection is in the plane of incidence, a two-dimensional

surface can be thought of (for the purposes of the above shadow calculations) as

many one-dimensional surfaces lying side by side.

A similar method to that above can be used mOr point to point shadow calculations 0
(see figure 5.11), the only difference being that the wave vector, and lhence it's 0
normal m, are no longer constant. Hlowever, the point to point calculation cannot

be extended to that for a two-dimensional surface so trivially.

The solution to the probleil of calculating point to ,oint shadows is to work with a

cylindrical system -- cartesian vectors are no longer the optimum tool. Fortunately,

the condition s.m > 0 can be rewritten in term,' of gradients. For this case: as you

step out along the surfa;ýe, if t~he gradient of the !ine joining the current point to

the starting point is greater than the maximum gradient so far, then the point is

illuminated. The gradient concep-t can easily be extended into the two-dimensional

case, as no spe.,.,3cation of direction has been made.

Tlhe final problemrl of determining which order to process the points on the surface
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..2 . . 1..... ..
Unprocessed Shaded- ... Illuminated

*h Figure 5.11. Shaded regions, of a one-dim-ensiona'l surface due to point to Point
scattering.

is still not simple - the most comiput~ationally effective being to Sp~iral out from11

p the 'source' point a~nd calculating, only once for each J)oiai, whethler- that point is

shaded or not. The difficulty lies in working out which points lie alorg the linle of

sight between tho current point, and the source position. 1Here, th lie ost Sensible

course of action is t~o pr.ecaiculate the polint to point dependencies; i.e., for each

*Point, create a list of points which will be directly) affected by a change inl it. Figure

5.12 shiows the concept schematically. These lists call be createdl inl such a wa~y as to

form a template which can. be overlayed on the surface at any posit icn. The template

* ~must be twice the area of th:ý surface; thus ensuring that the centre of tlie temiplate

can be positioned at one corner of thle surface while the whole surface still remains

under its influence, even though only ouc quarter of it is used. If thle, template were

the same size, as the surface, then only when the termjplat~e is positioned above the

surface cenCUtre Would the whole surface be .rocessed.

All that need be clone now is to spiral out, at each point, working out the gradient

AL•• •-#::•::" z:
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0

2.6 23
"£ I!.. .

_ 0 •

1. 6i7 2222

11 1.... ..-16.6 22.1

-'--I- - .~ ~ - -

Order points processed in (spiral out) - ---

21 2 3 4 5 6 7 8 9 ... 2324 ... 47 ...
.~ 9 : : : : : : 9 '.47 78

2323 47 7945624 118
47~ 119

47 165
166
22167 0

__ __ 223-
Figuire 5.12: Creation of a template for (letermininig point to point bliadows onit
two-dimienisionazl suirf'ace. The (lcJ)nderlicis are created by tracing a straight liIe
between a p)oint and the(. centre1' inlSerting a referenice to that point inito thei list, of all
points the line passes through. Ioin t 47 has boue) added to the list of every point
that has an effec' on it; a completed li9 t for point 47 V; also shown,

of the slope froin the. centre toj the currunt. point. Tihis is compared with the v'al ue

•. : 3 23 7 • 0
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of the- 'maxim-um' gradient associated with that point; if it is the nlew Maximum

the point is marked as illuminated, otherwise as shaded. The calculated gradient

*must still relplace the maximumtil gradient of each point in the dependency list if it is

greater, regardless of xvhether the original point was illuminated or not.

This last statement may seem unreasonable: how can a point which is not illumni-

na-teci cast a. sliadowv? The lprolblem here is that each 'point' actually has a finite

size -the whole defined as shaded or illuminated by the state of thle cent re. of that

polint. It is j)o:,i ble thlough , that one(. corner of the poinut n iigl t lbei lihii n iat e' the

* ~~centre being shaded; this could cast a Shadlow, which if ignored, wou1ld prop)agate ati

error though to all dependencies. Tile question of whether th~e whole p)oint should

*be set as shadeed 0r1. ilumiinated is unresolved. a better miodel could give each point

a more analogue value dlependinlg on the percentage of its area s~luac.., lu. hoever, it

should be noted that as thle surface varies siunootdlly, only those pointts oil a bouindary

between l ight and dark will not be t~otally one state or the other (at smiall percent age

of the Lota~l riuimbcr of points). This implies that for a point whiiichi is onl the bounid-

ary, overi half of its area. will be of theC saLMe State as its cenltre. Fiallfl,' if the sur'face

has been discretiscd to a SUfficient degree, adjacent points will niot hiave a noticeably

different effect onl the light which scatters frorin theorn, therefore sonle averaging of

the shiadecl/illum11inat-ed state will, occur.

The speed of this p~rocess can be improved by watching for when tire gradient and

distance from the initial po!Fition take the light above thle surface -- at. this p)oint,

all dependents in thue point's list cain I)e mrarked as s;liaded.

Figuire 5.1].3 shrows a twvo-(li nezusiouial sutrface p)rotile (left. iriiagc) anid tire effect of the
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~M *.

]\ormally Svrface SUL-faceS

Illuminated Iluminated Iluminated
Surface friom Right fromn Point

at Centre

Figure 5.1~3: Represent atiows of a coinpo tationally gencrated surface profile showi i g
the results of the Shad ing tech niques. The surface height at at poinit isi givenl by thle

brightness (light is high). The black regions indi1.cate shaded areas.

two shading techniiques, one of illumination fromn a certain angle. (miiddle imuage),

,mid the other of point, to point shading (right, imiage). Tilc dark line dlown the right

hand side of the middle iniage is p~resent because the liniages actually represent 1u uit

heights, but the shading calculations work onl the connections betweenl tllieuii; i.e,. at

surface with a side of :32 points will have :31 facets along it.

Extending the two-dimensional Shadow calcullations fromn a rectamgular grid into

one in which cachi rectangle is subdlividedl into two triangles is fairly simple. For0

the illumination and observation calculations,, each 'rowv' of tile Surface cai tll AM

be considered, excep~t uiow a row has. twice as manly poinits. The p)oint to point

calculation requires slightly morue thought, two tempjlates are reqluiredl, one for each

of the two lpossible 'source' triangles. More care nimu.t aiso be taken when spiraling0

out - the Samle proces"s oultl'ned. ab~ove canl be used, but the ordler in which tile subl-0
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triangles are processed must be intelligently defined: the one closer to the centre

first.

The application of the methods described above is not limited to calculating shaded

regions for nuinelical calculations. The author believes that these methods are the

fastest possible for determining lines of sight, with potential use in various areas.

5.2.3 Numerical Random Surfaces

A numerical randomn surface with a standard height deviation of a and correlation

Slength T can be created siml)ly by convolving Gaussian white noise, of standard

deviation a. with a Gaussian correlation function, of 1/e half width T. This is

shown pictorially in figure 5.14. Computationally, the convolution is performed

by a multiplication in Fourier space. Zero mean Gaussian white noise of standard

deviation a has (from Parseval's theorem) a Fourier transform which is also zero

mean Gaussian white ILui.Ie Of btandard deviation o. The Fourier transform of the

correlation function is obtained by applying a fast Fourier transform algorithm to

an array containing a Gaussian envelope function with a 1/c half width of r. This

transform can be remembered and need only be calculated once for each execution

of the program, no matter how many surfaces may need to be generated.

The actual process of creating a random surface consists of obtaining a random

number from a Gaussianly distributed set1'71 , multiplying this number by the rele-

vant entry in the correlation Iransform array and storing it in a result array. After

every element of the result array has been allocated, an inverse fast Fourier trans-

form is performed uipon it.. The final result is an array of Gaussianly distributed

I
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0

= -

0

0

Gaussian White Noise Scaled Gaussian with Gaussian Surface Profile
with a Standard a Standard Deviation with a Standard
Deviation (RMS of 'C Deviation of a

Height) of a and a Correlation
______________________________Leil~h oft -

Figure 5.14: Convolution of Gaussian white noise with a Gaussian correlation func-

A ---t.

tiGn. ihe method is eqally valid for tGso-dimensionthl Gaussac SUr.a

numbers with a standard deviation w and a Gaussian autocorrelation function with0

correlation length r.

5.3 Results0

5.3.1 Single Scatter Component of Sinalation0

Since the single scatter component and the analytical equation derived in the plrevi-

ous chapter both have a common origin, somre degree of similarity bet'veen the two

should be expected. Figure 5.15 shows the analytical and computational forrela-

tions obtained for the specular geometry with the reference at eight degrees. The

simulation was run for a , surface with p-aramet•rs identical to those of -surface #80,

consisting of 2048 points and with a side length of 730A. A square region with 24

points per side was illuminated (shading was incorporated) and the ensemble aver- 0

ou capcrboh av cmmn riin sre egeeofsiilrtybewen hetw0

shul b epetd.Fiur 515sow te naytcl ndcopuz~ilm crrl0
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age consisted of 600 surfaces. The analytical curve was plotted using the expression

for specular observation and with no averaging, equation (4.35) in chapter four.

1.0
CI Computational

0.8 -

0.6 Analytical- '

0.4
* i

0.2

* 0.0 I a ______

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0
* I1 /0

Figure 5.15: Analytical and single scatter computational intensity correlations for
observation in the specular direction with the reference at 8 degrees, a = 2.27p7n,
r = 20.7ymi and A = 0.6331tin. Both curves have data points every half degree.

The differences in tbe two curves may be attributed to two factors; the approxima-

tions made in the analytical derivation and the non-infinite, discretised surface in

the simulation. The relatively small number of sampling points per surface might

be expected to reduce the computational correlations, but as a reduction is not

9 evident, the arguments presented previously in favour of large distances between

surface points appear to be justified. However, although this appears unlikely, there

may still be a netting off of two opposite effects, one increasing the correlation and

one decreasing it, which could mask an error introduced by any particular approxi-

mation. Shadowing is not likely to have much effect for such a low sloped surface.

S
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Figure 5.16 shows the effect of inclulding polarisation tracking in the simulation, the

curves show the correlations of the polarisation components. The s-polarised curve

coincides with the the caiculation run with no polarisation tracking. In all cases the

incident light was s-polarised, all simulation details are as above.

1.0
C1

0..s Component0.8s
p, Component-X .....

0.6

0.4\-

0.2

0.01 A,,

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0
'1 /0-

Figure 5.16: Single scatter intensity correlations with polarisation for observation
in the specular direction with the reference at 8 degrees. The intensity of the p-

polarised component was about 10' times smaller than the s-polarised one. a =

2.27um, r = 20.7tm and A --- 0.633ttm. 0

An interesting point to note here is that the simulation predicts a small amount of

depolarisation in the specular direction. It is generally accepted that single scatter

calculations do not predict depolarisation in this direction, and any cross polarised

comnpo Lent noticed in experimental situations has been attributed to some degree

of multiple scattering['.

The polarisation change shown here is an artifact of equation (4.10) and the method
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chosen to control polarisation, the reflection coefficients. The cross-polarising reflec-

tion coefficient becomes zero for any specular scattering and on the face of things

this will mean no depolarisation. However, when considering that a small amount

Sof light may be scattered into the specular direction from slightly tilted surface

facets, the last term of equation (4.10), not multiplied by the reflection coefficient,

is non-zero, and makes a contribution to the cross-polarised light.

This result requires & more in depth study of polarisation changes from scattering ele-

ments. However, since the predicted depolarisation is very small (the cross-polarised

component is about four orders of magnitude smaller than the co-polarised one), it

will not. be noticed by the experimental equipment, and may be ignored for the pur-

poses of this work. It will ,nake an insignificant contribution to any cross-polarised

component due to imilt iple scattering. It may be that the result is merely an error,

due to the specular al)proximation used to calculate the reflection coefficients or

the finite size of the surface facets. Alternatively, it inay be that the technique to

control polarisa-tion using reflection coefficients can not be applied to light which is

not locally specularly reflected, or that the presumption that no depolarisatiomi is

present in the specular component of light scattered from a single scattering rough

surface is invalid. Future work might like to consider this.

5.3.2 Experimental Results from a Multiply Scattering Sur-
facei

Figures 5.17, 5.18, 5.20 and 5.21 show, for incident-observed polarisation states of

s-s, p-p, s-p and p-s respectively, experimental correlation results for surface #83.

Within each figure, curves are plotted for reference angles of 2, 10, 20, 30, 40 and

I
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50 degrees. 0

1.0 01=100 0 =20o G1=30& 01 =40 0 500

C(0, 0o)
0.8 0

0.6

0.4 0

0.2 0

0.0 0/0
0 i0 20 30 40 50 60 n

Figure 5.17: Experimental intensity correlations for surface #83 with incident, and
detected light s-polarised. Curve labels represent the (incident) angle at which the
reference was taken. Observation is in the specular direction and A = 0.63:3/tm. _

0_-

1.0 01=20  01=10& 01=20& 01 =3&0 01=4& I .150
Q2(0, 01)

0.8 •0

0.6 -

0.4 n

0.2 0

0.0 0/o
0 10 20 30 40 50 60 /

Figure 5.18: Experimental intensity cori'elations for surface #83 with incident and
detected light p-polarised. Curve labels represent the (incident) angle at which the
reference was taken. Observation is in the specular direction and A = 0.6.3j3rm.
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As can be seen in figure 5.17 and figure 5.18 -- data from co-polariscd arrangements

- the narrowing of correlations at higher angles, or rather the widening at lower

angles, observed in the single scattering case (cf. chapter four) is less evident. As

expected then, this surface does not conforin to the analytical theory in chapter

• four. Figure 5.19 emphasises the failure by showing the results of the analytical

expression compared to the results in figure 5.17.

01.0 =20 0110 0 20 0130 01-400 01=C.." ~Q6 0000o
S 0.6 ' t'

• 0.4 'I

0.2

0 10 20 30 40 50 60-

Figure 5.19: Experimental data as in figure 5.17 - surface #83, incident and de-
tected light s-polarised - with averaged analytical curves (dasled lines) as descfiihed
in chapter four overlayed.

Figure 5.20 and 5.21 are more interesting; these are plots in the cross.-polarised case,

showing the double scatter component of the scattered field. They are similar to

the co-polarised graphs, figure 5.17 and figure 5.18, in as nmuch as the widths of

the peaks are the same and uniform, but at the lower angles an extra bump in

the correlation coefficients has appeared at the sides. When considering that the

experimental equipment correlates two separate speckle patterns (not just the point

intensities, as do the calculations), this suprising result means the speckle produced

0'
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lby one angular arrangement, inl the double scattering case, is remarkably slimillar to

that produced by another totally different arrangement. Chapter six discusses why

this could be so.

1.0 01=2O 01=00 01=200 01=ý300 01 =40O 01 =500

C(O,0 1 )

0.8

0.6 0

0.4 0

0,2 0

0.0 0/0 10 20 30 40 50 60

Figure 5.20: Experimental intensity corrielat ions for surface #8:3 with Incident tighit
s-polarised and detected light. p-polarised. Curve labels represent. the (inicidlent)
angle at which thi, reference was takeni. Observation is inl tile specular dhirect ion and~
A = 0.6331tm.

To showv the extent of the double scatter extra correlation peak more clearly, a surfaice0

plot of the correlation coefficient~s is given, in figure 5i.22, over all combinations of the

two correlated angular arira ngementts, for surface #83, inl the Case where s-polariscd0

light is incident and p-polarised light detected. Although a peak is evident either

side of the main 01 = 02 ridlge, this can be considered as simply a repetition of data,0

-everything on one side of the ridge should be visible on the other. The peak of the0

extra correlation occurs when thle reference image is at two deg~rees and correlated

with one at eight and a half, or vice versa clue to the symmetry. The data, was taken0

with an eight bit Pulnix CCD camera which was used before the low noise Princeton
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1.0 01-=20 01l00 01=200 01=300 o0400 o=501
Q0( O, 0) •

0.8

0.6

0.4

0.2 -,

0.0 - -.... 0 -- --- 0/0

0 10 20 30 40 50 60

Figure 5.21: Exl)eriniental intensity correlations for surface #83 witli icident light.
p-polarised and detected light. s-)olarised. Curve labels represnt. the (incident)
angle at which the reference was taken. Observation is in the specular direction an(l
A = 0.633jon.

Instruments camera. was available.

To hell) compare these results to the discussion of intensity results lroviously re-

ported with this surfacellI], figure 5.23 shows the intensity plot for surface #83,

where as usual, the detector is in the specular direction and the illuminating light

has a wavelength of 0.633tim. The figure shows two graphs for the average inten-

sity, one with s-polarised light detected, the other p-polarised. Both curves were

obtained with s-polarised light incident.

As with previous average intensity results presented, in the Co-l)olarised situation,

the light level detected tends to increase as the angle of incidence moves away from

normal. The cross polarised case, h, wever, shows some interesting behaviour; the

intensity drops a~nd then rises back up again before tailing off as with surface #239.



164 CHIAPTER 5. DOUBLE SCATTER SIMULATION

CI

0

00

Figure 5.22: Surface plot of correlaition coefficients for surface #83 with inc':lent
light s-polarised and observed speckle patterns p-polarised.

The rise in intensity is one of the 'side lobes' noticed by Mcndez and OTloinell[tii •

when scattering from this surface, occurring here at a larger angle than they observed

due to the geometrical arrangement used. No back-scatter peak is seen at normal

incidence because the equipment was not set itp to observe in that direcaion - the

detector's view of the surface is obstructed by a mirror used in the beam delivery.

0
Figure 5.24 shows a close-up of the p-polarised comnponent of figure 5.2:3. Two peaks 0

are clearly evident iii Ithe intensity profile. The first peak is the side-lobe .reviously

mentioned. The second pealk, not obser'ved in the work referenced abo,-e - most 0

likely because of the geometrical arrangement used, is discussed in chapte: six. It is 0
shown to be a second order effect (where the back-scatxer peak is zeroth order and 0

o

0
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* *- 0.02 ,

00.01

0 ~~~~0.001,,I, /0 10 20 30 40 50

2Figure 5.23: Average intensity plot for surface #63 with observation in the specular
O direction and wvith s-polarised (squares) and p-pola,'ised light (circles) detected. The

illuminating wavelength is 0.633nm? and s-polarised.
0

the side-lobe first order).

O.Ol

S0.010.

• 0.005 -

S 0o,---'0/

* 000 5 10 152

Figure 5.24: Average intensity plot for surface #83. This graph shows aii exianded
view of the p-l)olarised compnonent of figure 5.2:1
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5.3.3 Computational Results 0

Figure 5.25 shows the correlation curve produced by the computational method

detailed above for a surface with rrns height and correlation length as for surface

#83. The graph shows the single and double scatter components for s-polarised aud

p-polarised light observed (with the incident field s-polarised), and also tl,e combi-

nations of the single and double components, the total curves, for each polari...tion

state.

As discussed in chapter four, there is no point trying to directly compare this iesuit

with an exlperimental one as the latter is spatially averaged, reducing the correlation

values. A superficial examination reveals that the total computational vali.es are,

as expected, higher than the experimental ones at any given angle. It may be

seen, however, that the distinctive bumps present in tie experimental curves are

noticeably lacking in figure .5.25. 0

Figure 5.26 is a curve l)rodttced by the method when an ensemble average is taken

over only 100 surface realisations. As call be seeit, cxtra cu' clatiOul pealk, eatr

now present at the lower angles. The reason they are not observed in figure 5..5

is because they have been averaged out. This computational method gives extra

correlation peaks of different heights and at different positions for each run of 100

frames. Averaging over greater numbers of frames washes the peaks out.

The inconsistent manner in which the extra peaks appear may be explained by 0

the following points. A possible mechani.,ni t.o describe the origin of the extra

correlation peaks, given in chapter six, relies heavily on the phase change of the

light scattered between sides of a wvell in the surface. The main approximations 0

- A -0
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0 Figure 5.25: Computational correlation curves, for a surface with !)aratiet-ers identi-
cal to surface#83, with the reference image at 10 degrees and showing the different
components. The incident field has a wavelength of 0.633,p. ? and is s-polarised.

SThe ensemble average was taken over SOO frames of a 20418 point surface with a sid,:
length of 60A.

necessarily introduced into the computational method in order to get. soine results,

namely the large spacing between surface points, will mean that this very critical

distance (around seven wavelcngths for surface #83) is constrained by the spacing

and size of the surface facets. There ar? less than fi *e surface facets over this critical

distance. The random additions to the coordinates of the surface points to give0
a, uniform phase distribution of the light scattered from all points of the surface0
will not lelp in this localised situation -- the critical distance, over any five facets0
contributing to the extra correlation peak, being randomly adjusted.

Nevertheless, although it is not possible to compare figure 5.2.5 and figute 5.26

0 directly to the experimental results, they do show clearly which components of the

0D



0

168 CIIAPTER 5. DOUBLE SCATTER SIMAULATION
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Figure 5.26: Computational correlation curves, the variable I)arameters are ident ical S
to that of figure 5.25 except that the esenible average was taken over only 100
frames.

0
correlation curves are a result of the single scatter and double scatter pro(sses.

It is clearly evident that the double scatter process is resI)onsible for introducing

side peaks into the correlation curves. It may also be seen that the cross polarised, --

double rcatter component of the simulation and the total curve are the same; proving

that the cross-polarised, single scatter component (discussed above) has a negligible

effect on the overail result.

Figure 5.27 and figure 5.28 show graphs of the correlation coefficients for, respec-

tively, s-polarised and p-polarised components of the total (i.e., single lplus double) O

field scattered from the computational statistical equivalent of surface #83 using S
the method above. All the r(esults were taken oven a 2048 point surface with a O

side length of 60 wavelengths and a wavelength of 0.6331tm. Each graph shows four S
curves, with the reference angles set. at 10, 20, 30 and 40 degrees. O

0-
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Figure 5.27: Total (single + double) corm putational correlation curves for surface

#83 for various reference images (at 10, 20, :30 and 40 degrees). The incident field
has a wavelength of 0.6:33/on. and is s-polarised. The corrclations consider only the
s-polarised scattered component. The ensemble average was taken over 600 frames
of a 20,18 point surface with a side length of 60A.

It is immediately noticeable that both of these figures show roughly the expected

shapes for the correlation curves. The curves in each diagram are all about the same

width irrespective of anglc. The finding differs from the single scatter prediction that

the widths of the peaks should reduce as the angle of incidence increases, but is in

accordance with the experimental results (cf. figure 5.17 and figure 5.20).

The above results, derived from the computational model, go to show that the

departure of the single scattering Beckmann theory from the experimental results

arises soley because of its failure to cope with multiple scattering. In fact, it has

been shown that considcration of just the s~ngle and double scatter components of

the scattered field is sufficient to bring theoretical calculations into line with the6l
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Figure 5.28: Total (single + (douible) computational correlation curves for surface
#83 for various reference images (at 10, 20, :30 and 40 degrees). The incident field
has a wavelength of 0.(i33amn and is s-polariseal. The correlations consider only Hie
p-polarised scattered component. The ensemble average was taken over 600 frallm(es
of a 2048 point surface with a side length of 60A.

experimental results (from surface #83). S

As shown in chapter four, surface #83 was expected to fall within the regime of

the Kirchhoff approxiniatioi,, btut not to conform with the lBeckniann soltiion. 'Ille

similarity between experimental results and results from the computational niodel

facing the same constraints shows that the conceptual basis of the statistical analysis

of the surface parameters is trustworthy. An arguenient is presented in the next

chapter which is based upon similar concepts and can explain the shapes of various

scattering results from doubly scattering surfaces.
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* Chapter 6
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0

S Discussion and Conclusion
0

S

O 6.1 Single Scatter

It hats been shown that for a Gaussian random rough surface with its rms surface

height and correlation length within certain ranges, such that the surface m3ay be

considered to be single scattering, Beckmann thcory adequately explains all exper-

imenta.l results presented once allowances for the particular experimeuital situation

are incorporated. As an existing, well established theory copes well with the situa-

5 tion, no further explanation is deemed necessary here.

S If any future work is proposed in this area, it should be to quantitatively examine

* the effect that spatially averaging the speckle around the observed direction has on

* the correlation coefficients.

171
0
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6.2 Double Scatter 0
For Gaussian random rough surfaces with rms heights and correlation lengths such

that they may be considered as double scattering, but still conforming to the re-

strictions on the Kirchhoff approximation, experimental results were found to depart 0

from the Beckmann theory (which only considers a single scattering mechanism) to 0

a greater degree as the surface . ameters fall further from the ranges that indicate 0
single scattering. Polarisation changes were also noticed which are not addressed by 0
the Beckmann approach,

As there is ito ana-lytical theory known to the aut.hor wlinch can . for multipie

scattering from two dimensional surfaces, a comlputational model has had to provide

the theoretica.l comparison for the results obtained. Vast( demands on comlputer •

resources limited the extent of this comparison. However, a very simlple model is 0

now proposed which explains some features of the experimental results, namely the •

peaks in the correlation curves and their relation to the side lobe in the intensity -

plots.

The first part of this analysis will concentrate on an examination of the scattered

intensity envelope. 0

0
6.2.1 Scattered Intensity Envelope Considerations

The following is based on an intuitive argument that some observable macro-effect

(e.g., a side lobe) is simply related to micro-causes (e.g., phase differences due to

a collection of individual scattering paths). This is not a new approach; various
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authors (mentioned below) have explained the double scatter effect in this way, but

only in a qualitative manner.

Consider figure 6.1, which shows one valley on a surface and one possible pair of

interfering paths ace and dcb, both of which travel along the same line between the

two points of contact with the surface. All incident light is at an angie 0 with respect

to the mean surface normal, and only the light scattered in the specular direction is

considered. As vector quantities are used, the representation can be applied to two

dimensional surfaces.

Zt a /b • -

a III
zaa

/ k 2 
.......

Figur6 .Air. of the ma.ny possibe interfeing l•ath wiin a .va l

...... ... ....l

D surface.

P Previous arguments along these linesli ](41] have concluded by stating Ithat the back-

scatter peak observed when illuminating multiply scattering surfaces is clue to con-
S~structive interference between two equal and opposite lpaths, one the' time reversal

• ~of the other (a less general situation than with Ipatlhs ace. and (lcb). These paths .

S

..... ....
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are guaranteed to constructively interfere, all other paths resulting in no tiet. inter-

ference. This argument may be extended to include the so called 'side lobes' by

simply considering the first order interference fringe between more general paths13".
Figure 6.2 shows the equivalent of the side lobes evident when observation is in the

specular direction.

0.01000

0.0050

0.000 r

510 15 20 0

Figure 6.2: A graph showing the cross-polarised intensity scattering envelope from
surface #83. This is a duplicate of figure 5.24 in chapter five. Observation is in the
specular direction and the incident light has a wavelength of 0.63-3r..t.

Examining the arrangement more closely, the phase difference between the paths, •

€, is easily determined:

(k1 .r1 - k 2 .r 2 ) -- (k 1 .r 2 - k 2 .r1 )

(k1 + k2 ).(r1 - r 2) (6.1)

For t! e specular case considered,

"2'r
ki .---(sil Ox - cos 0z) (6.2)

A
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S27r (sin Ox + cos Oz)

giving the phase difference 4 OA l (6.3)

S= TsnA 63@A

where Ax is the distance between the two scattering points along the x axis. As no

concessions to a one dimensional surface have been made, this is true even for a two

dimensional surface - it is a consequence of the in-plane scattering geometry used.

For constru, tive interference, O must be an integer number of 2ir, i.e.,

2n 4r sill sOx (6.4)
A

S where n is an integer, or equivalently,

sil0 - (6.5)
* 2Aa'

The question is now posed as to what Ax is in a inacro sense. By averaging (equation

(6.5), over an ensemble of wells, the surface may be considered as a whole, such that.

* sin 0 = ((n.6)
2qa,a

Swhere the quantity ?jA, has simply replaced rAx, and may l)e considered as the nwan

well width (across the direction of the incident plane).
S

SEquation (6.6) can iow qualitatively explain the feat;-res of figure 6.2. The back-

* scatter peak is the zeroth order fringe n = 0, i.e., when 0 = 0; and stul)seqluent peaks

p are the higher orders, n = 1, 2..., their actual position determined by Ax.

When 0 = 0, n 0 regardless of the fluctuations in Ax. This is the backscat-

tering condition -- all contributions are in phase. However, higher n values will
S
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not preclude the variance of Axr. The prominence of any fringe at these values will

depend upon the variance in the phase. The standard deviation in the phase may 0
be determined from equation (6.3),

(a 4 7 Sil O0rA' (6.7)

Trhe larger ar¢ is, the smaller the intensity of any higher order fringes. Obviously, to

determine the exact condition the general form of the prol)ability deisllitv function

of Ax must be found. The values of YIA- and crAr, may also then be obtainable.

Antibackscatter1 "I is also allowed by this model, since it has now been establislhd

that time reversed paths are not required for a peak in an intensity envelope.

One final feature of the intensity plots, which has not been previously a(ldrsse(l and

which this model can explain, is why the co-polarised and cross-polarised conipo-

nents of the detected light show peaks at different angles. This is evident in figure

5.23 in chapter five, and also for the side lobes in other scattered intensity results

froni two dimensional surfacesll i] lP'.

Figure 6.3 shows intensity results similar to those shown in chapter five, but was

obtained by summing Up all of the pixels in a speckle image taken with a Pullnix

CCD camera[W]. This camera was used before the lower lnoise Princetoi instruments 0
camera was available. The general shape of these curves should be ignored - they

result from an automatic gain which the camera possessed - but the angles at 0
which the peaks appear may be relied upon. The images which make up the cross

polarised result include some of those which went to make uI) the surface plot in•

chapter five, figure 5.22.

F_2 ~Figure 6.3 is considered now as it is known to results from an area of surface #83

i0
0
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from which correlation results have been obtained and it clearly shows the positions

of the peaks. It should be stressed that the following will still apply to figure .5.23

in chapter five.

12

,10

0-0/
0 10 20 30 40 50

Figure 6.,3: Intensity plot,.k for s-.polarised and p--polarised light. (leteted Lom sur-
face #83, showing the angles of the peaks observed for observation in Owe specular
direction when s-polarised light is incident with wavelength 0.633,im. Daia points
were taken ever3 half degree.

It is now necessary to consider what is happening from a two diulelisional point of

view and introduce the concep)t of a mean well (i.e., the average dip in Ilhe ,urfrace).

Consider one such well, which, upon double scatuering, may give rise to both a

co-polarised and cross-polatrised compouent, as shown in figure 6.A. It ib clearly

evident in the diagram, that the imean well width from the point of view of the

cross-polarised componeat is shorter than that fcr the co-polarised component, i.e.,

for s-polarised light Incident,

Where thesuercrý!' represeul, t~he polarisation state of the observe.d sciaf.tcred
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tE E

ifi
EE

kk
I' *2E

/0

~Ax A~ x_

Figure 6.4: Schematic diagramn showing howv a well inl a suriace dloubly scallcu.,s

polarised light, to give b)oth a co-jpolarisedl and cross-polarised coy .,ponlent.

considerinug equation (6(i6), it mlay be seenl that for a pa rt~icuiz1 r (greater Owhan

ize.o, isobserved, the aiigle at which. a. peak of a particular urder appears, .s 1:.ge

for theA, cr~-ý-h--e coniflpnit1!. thlan for the co-polarised onle.

c ntu11in Wit T10Iodcl ofacircutlar (teaeagmla e lvallnve a m~ore

defiulite xc tosipbetweell //ý ;ýAd IIA Iiiay oe esabisedpulyuet e

circular geometr~y. From I figurec 6.4,

71Ax 7- , Xco~ (i. 10)

"This let~to a rclation, hetwceii the aiigles at whlichi the peahs ocýcur; for a particular

s il v= I2sill9 0.,il



6.2. DOUBLE .SCATTEkR 179

* ~Taking the angle at which the s-polarised side lob~e appe~ars in figuire 6.3, 0, -

* 6.5 ±0.25 degrees, and applying equation (G'.11), the angle tile p-polarisedi side iobe

should be evident is, Op, =! 9.2 ± 0.4 degrees. This compares well with the angle

* measured froin figure 6.3 of 9.25 ± 0.25, giving a great deal of weight. to equation

* (6.11) and the simple mean well model.

0 6.2.2 Correlation Considerations

Following anl argument similar to that given at the begi miling of the p~revious sect ion,

A
a high dcgree of correlation may lbe said to e2.Ist- whlem, Oil aVerage, the' Ii fferemice InI

0 ~the phlase differences between ally' two pairs of Interfering path usIs close to /wro. INote

that this is; regardless of what those phase differences are. Thins is louilt, onl the basis

that a. high (le-ree of' correlationl occurIS when~ s1)eckles appfear in the Samle plface,

'v i. :-e,,)CCt to other speckles, that they (10 at another angle. The p~resumpItionl is

then mnade that wi(lividulal wvells in thle surface must be mnaking thle sauiii (or similiar)

* ~contributions to thle scattercd field at both angles.

Although it may seem unlikely thatt the multiple con~tribution-s, from11 tile Various

wells, should all m1aintainl thle Same p~hase relatilonships with resp~ect t~o each other,

without kuepimig the same phiase, there is no reason for imposing such a restrictionl

* and therefore the ab~solute p)ha.-e chiangý wvill be left undefined.

0 ~~Stalti ng w~itthedi ph)ase (ifferlmclie 1)' tmeemm a pair of paths onL the surface, equationL

0 ~~(6.3), the differernce bctwcen tlmaý i n'.rc duced by one( pair and fli at i itrod mmcd by

another may' be 'otai mned. InI partictilatr, the di ficrezice j 1 t rod u ed 1by otica mingle of

0 ~~incidence coniparva to ainotlmer may bo cletermni'ied.
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therefore be
471-

AO = 02 - 01 = -A(sin 02 - sin O)fAx (6.14)

In equation (6.14) Ax may by replaced, following the same iarguineat as made pre-

viously, by t;a. - a surface wide parameter.

As stated above, a high correlation will he expected when the differelice in the two

1 phases is zero or an integer multiole of 27r. Introducing tins into equation (6.14)

gives

sinO1 = i1 ± (6.15)

When n. = 0, 0O = 02, a correlation between two of the same thing - obviously 1

-the main correlation peak in the experimental results in chapter five.

However, higher order izt,_'tactions may sLill give a. degree of correlation, albeit at-

tenuated by the fiu tuatio.,s in Ax, explaining the extra peaks observed in the

correlation of speckle patterns tomn doubly scatteting surfaces.

Unfortunately; experimental work conducted did not produce moic than one extra

correlation peal. (the first order one), but the corlI)ultational results, shown in figure

5.26 in chapter five, clearly show two extra peaks to the s.i, of the. main it 0

peak. This evidence affords sonle confidence in the above argument.

6.2.3 Further Analysis of the S imple Modci

The model, as it stands, is not perfect; for instance, it fails to predict the relative

place:ncnt. of any higher older intensity pyaks and is likely to fail in the correlation
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case as well. Given that. the first order peak is at. 01, the second ordier peak should

be expected, fronm equation (6.6), at

sill 02 = 2 sin 01 f~6

In figure 6.3, with tile first order peak at 6.5 ± 0.25 degrees for the co-j)olarisedl

situation, the second order p~eak should be expected at 13.1 ± 0.5 degrees. There is

clearly a dip around this region in the graph.

It is, however, possible to explain this failure. One of the -main assump1)1ions the0

model wvas based upon was that, the meanl well widith is liXCdl, andl that the lilt nerig

lighit travcled along equal but. opposite pathis betweenl the(- two scatl erl"Ig poi itts of,

surface.

It is now proposed that. if light, Is incidlent on a well at a large angle, it xviii travel

a differen~t distanice betmweni points than that in( ident at at small angle. This can

be seeai in figure 6.6. Tracing the concept. through, it is recalised that if a Llcrge

angle of incidence dlecreases the wvidth between scattering points, thien the anigle the g

peak appears at will correspondingly increase. Releasing thle restriction of fixing 7/,

explains why a second ordler peak is olbservedl a~t around 15.5 iegrees, in figure 6.3,

instead of thle predicted position of around 1.3 degrees.

The possible scattering lpathis that might exist higher ill) the well, traversing across0

larger distances, may be dliscounted lby realising that, in a large pr1oportionl of these

cases, the other side of' the well is not likely to rise high enough to catch the light.0

for thle second scatter.

Note that now ?qa. should be written either, 7A(),as a function of 7t, or More

properly, 77A.(O), a-- a function of tile angle of incidence. SomeC idea of the form of
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therefore 2m, the difference betwcen -M and 7n.

In chapter two, an expression was obtained for the rate of change of the gradienit

with respect to the distance across a Gaussian surface, namely its mis curvature,

equation (2.33). -

As the portion of the surface considered here is at the bottom of a well, i.e., in the

region of a high point in the curvature, the approximation to the rins curvaturt may

be on the low side. To allow for this a quantity p (which gives a result of less than

1) is intro(LucCd,

(1e 2 ý/:3 (

(1.1 " 2/ ( .18)

a and r are, respectively, the rmis height and correlation length of the surface. •

Strictly speaking, p will be a function of 6, decreasing as 0 increases - for now it

will be considered constant.

Dividing the change in the gradient by this rate of change will give an exN)r('ssion• .

for, 71ax.(O), the distance between thle two scattering points,

. tan( 2 (6.19)

where 0 is the angle of incidence. Obviously this expression will apply to the co-

polarised case - it is related to tile cross-polarised case by equation (6.10).

Substituting equation (6.19) into equation (6.6), an abso!;mte exp,ession for the an-

gle , 0, at which the side lobes appear may be obtained,

7r 0\ v"n0a
silO tan - - 2pr2  (6.20)

which may be traniirmned with suitable trigmioinoetric identities to give (for ternmsI0
0,
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up to order tan2 (0/2)),

tan (2 - J(2-( - 4((( + 2) (6.21)
()2(( +2)

where

7 _ - a (6.22)

2p(.'2

Applying this to surface #83, p may be determined iby looking at the n = 1 peak in

figure 6.3 where V = 6.5 ± 0.25. It is found that p = 0.66 ± 0.1-1 (tle large error is

due to the inclusion of tile uncertainty in the measured surface pamriietvrem, a and

r).

For n = 2, equation (6.20) predicts 0 = 15 ± 5 degrees (which will bQe slightly on

the low side due to the assumption that p is fixed). It may be seeni that the second

peak in figure 6.3 is near the centre of this range at 15.5 ± 0.25 degrees.

Incidentally, the mean well widt-hs which give rise to thjese inl tesit peaks aret ap-

proximlately 4.3:ptn for n = 1 and 3.6toi for n = 2. That is just under 7 and 6

wavelengths respectively.

The calculated value of p for figure 6.2 is 0.94 ± 0.20. The difference between this

value and that found from figure 6.3 can be atOributed to the different a.reas of the

surface used in each case, which implies that the surface statistics are not uniform

over the whole surface on such a small scale (and was found to be the case[' 1 ).

The relaxation of the constraint on i1ax also carries through to the correla.Liol model.

The assumption made at the start of this study, that thie two scattering paths

traverse the same line between identical scattering points, (refer back to figure 6.5
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to see this), is no longer consisLent with the understanding of the processes at this

stage. 0

As previously mentioned, for a high degree of correlation, all that is required is for 0
any two paths to give rise to the same phase change. It is not necessary for these 0
paths to travel the same route. 0

Rewriting equation (6. 1-1) to retlect. this, one obtains

4- 0
02 - ' = -- (sin \ 2"_x 2 - sin Ol-.r ) (G.2:1)

where Ax is not fixed, but. depends upon the angle of incideuce. The subscripts I

and 2 denote the two different correlated arrangements. 0A

Shifting again into using tOIe uIean II %vidth (which is now a function of a ugle) and
0

confining the two phlasc. to be integer numhers of 2r apart.,

Sill 027IA.(02) -A + sin O1/a4,(O- ) (( 21) 0

Substituting equation (6.19) (modified for the cross-polarised case) into this gives

Sill 0ta2 2. -2 
2 pr 2 +,-i"161 tall (6.25)

which may be solved for 02 using equation (6.21), wheie

.111 v1'\ 01(.6
-/ n

92P-2 + Sill01 tanl ( 7 62i

0
Unfortunately, as discussed above, there is no reason to expect the pha.se differences

in the correlation poeakls io be related to the intensity envelope peaks. In fact, t~he

paths which combn'i, to give a high degree of correlation (i.e., speckles in simcilr
0
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positions) are unlikely to be the same paths which produce the high points in the

intensity envelopes. However, the differences introduced into the pathis by illmiii.-

nating at different angles are adequately covered by equation (6.25) if p is set to

allow for the curvatures involved.

Examining figure 5.20, ii. may be seen that for the reference, 01, at 2 degrees, a peak

in the correlation curve a.p)pears when 02 =8 .5 ± 0.2.5 degrees. This gives a value

for p in the correlation arrangement of 1. + 0.±3 (including all errors (Lie to the

uncertainty ill ineasureiieiwt of the surface paraineters). It has heen assiumied thiat

the observed peak is the first order interference one, i.e., for = 1.

With the reference at 01 = 10 degrees, there is an observed peak at u1 = -1. Its

predicted position, at b'2 = 3 ± i.5 degrees, compares favourably wit h thle measured

angle of 2.5 -± 0.25 degrees. However, not-e that the angular differencesl between the

two peaks and their reference angles are too similar to I)o:;e a slr[torls test for the

theory. The fluctuations in 41x, coupled with the spat ial averaging ileccssarliiv ill-

vollved with the cxperlniciltal technique used, picvILt anyl' highie411 rdet peaks, whiiichi

Scould moie rigorously test the predictions, from being observed in the correlat ion

experiments.
S

5 It may be realised that the larger value of p for this situaition, mteans that the

curvature, averaged around the area of a well which contributes to a high degree

Sof correlation, is less than that in the intensity case; i.e., the scattering processes

Swhich contribute to the t tat correlation in surface #83 occutr at, higher positions

in the well than do those which contribute to a side lobe in the intensity envelope.

0
As mentioned above, p was assumed to be constant. The assumptionr will have a

0
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much larger effect on the correlation r,.sults, than it did iln thei ittensity siltuatiou,

as the curvature is likely to be varying more rapidly in the region of the surface

contributing in the formcr case. This. st•atement is based on the previous finiding,

that the portion of the surface contributing to the peaks, is further away froom the

bottom of a well for the correlation case as compared to the intensity case. As t his

is not allowed for, the predictions of the pos'iitions of any correlation peaks sh.otulld

not be expected to match exactly with the observed positions.

Further evidence of thei chauige in p with lie angtle of 1i icltii'ce is 5'1' ill thl' cor l[-

iatiout coefficient.t for s.cal ering fromu :surawce -#239. Con sideriug figte -1.20. valtes 0
for p are found to be about 0.6 a round the 10 degree poiit, inc reasing to abouti 2.0

by the 30 degree iuarl<, Theiese mioveienits may. ne explai ined if at highem angles of

incidence, the areas of a particular well contributing to ex,:tra correlation peaks ate

higher up the sides of thai. well; i.e., the average curvature between the two points

is reduced. The moveetcti of ilhe contributing paths to higher position.s ill the we --

also explains why the extra correlation jpeaks are lower at the higher anleas -- the

fluctuatio. in ,Ax will! )e greater at higher angles.

6.3 Concluding Remarks

The first three chapters of this thesis were concerned with building nit the btack-

grounid td the coItcept of multiple scattering and correlation coefficients. An intro-

duction was given into the statistical notions and electromagnetic theories used later

in the work; and the methods a-nd controls required to produce results pres'nt ed in

the following chapters were detailed.

0I
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Perhaps the only real surprise contained within these three chapters was at the end

of chapter twVo, where a statisticalI study gave an analytical tool for determining

whether a Gaussiani randomn rough surface falls wvithini the regime of the Kirch-

hoff aporoxitnation. A distinction was made between the validity of the IKirchilloff

app~roximation, as applicable to a point oin the suriface, andl the single sa~e~i

Beckmiann theory. The three surfaces used throughout the work were all seen to fall

within thle bounds of the INir-chhloff approximation (at least. at niormal Inicidenice).

The fou rth cliapt er saw%- the start of more originial wvork; it vxamIincied thie anugilar

correlation of speckle Ipat.t.erns, prod1uced1 by lowv slope surfaces. A sthudl slimilar t~o

that used to dletermine which surfaces, fall within the Kirclilof[ approximiationl Was

employed, to give some idea of wh~ether a surface should be e~xject ed based onl its

measured p~aramleters a and T, piiireiy to lbe a slingle scat teritig onle or. not. It is shownl

tlia-t of the th ree su rfaces und~er exaun natilon, one( W~aS pu rely sing~le scat Ieri ug, one

double scatterinig, and the third lay Onl the border betweenl the two region01s.

In

An analvti1ca~l expression was derived, following the work of Beckinamilh~t and Leger

and Perrin[3l, for the Intensity correlation cocflicieit~s exp~ectedl III a genleral two

dimensional scena-rio. It was then tailored to Suit inl planeC scattering anld souie of its

possiil~ities wvere explored, these departed froin the results one might have expected

intuitively. Thie more general expression was averaged around the direction of ob-

servation, to rep~resent more accurately the relatively wide view considered in the

experimental case. Experimental results fromi a single scattering surface wvere found

to be in good agreement, andl reexamininig the p)ossib~ilities explored earlier with

this newy averaged technique gave results inl line with thle intulitive uinderstandinig.

Finally, results were p~resenlted for a surface which departs slightly fromn the single-
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scattering regime.

0
In chapter five, the double scatter Kirchhoff theory was derived for two (ilei-

sional scattering. It had to be solved computationally and most of this chapter was

concerned with explaining the methods used to make it possible. Polarisation was

incorporated into the calculations, and surface self shadowing was allowed for. A

technique capable of calculating which points were visible from another, over the

whole surface in just one pass, was presented. Experimental results aii(l the results

from the computatioual iiiodel were shown.
0

In the previous sections of this final chapter, an accepted iolodel used to explain 0
intensity and correlation results, which succeeded in predicting the occurrence of

certain features, was shown to be insufficient at a less superficial level. The model_

was advanced and shown to adequately explain and p)redict various features evident

in intensity and correlat ion situat ions, when observing ill Itle spectila r (dirlectio0,

more accurately.

It was shown tlha.r the positioning of the wells within the surface does not matter,

only their widths have any effect upon the angular positioning of multiple scatteling

features. Also, it was suggested that. it was a rcgion near t-iie hot-tom of a well which

gave rise to the intensity envelope side lobes, and that less r-estriction is placed upon

the region giving rise to the extra correlations.

This may be explained by considering that for an overall intensity gain, i.e., a

side lobe, a vast majority of the wells on a surface nmust be introducing similar

phase changes (so that their contributions to the scattered field will constructively 0
combine). It seems reasonable to expect that any similarities in the various wells on

0
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the surface, will be towards their bottoms - every well has a hottorl. but. how far

up its sides go is less definite.

For a. high degree of correlation, it. is only required that a singic well should give the

same phase cont.ribut.ion to the scattered field at on,: ingle as it( did at. the other

angle being considered. It should be expected that this will occur surface wide (on

an average basis) at particular angles only, bu), Inot icccessa ri ly at I.hiosc aillgles. wh ich

give rise to intensity side lobes.

The maiii stiCCcesses of tins niodel were the relatholshiips forimed betl,,t'Nn pea!ý.• of

different orders in both the intensity elivelope and cor'(.latiohn cit\'es, and b+t\veweii

the co- and cross-polarised peaks (of a particulari order) ol)servcdl inlt1caiteiisity

result~s.

No attemlpt was made to reformulate the equatiomn derived, such that they may be

applied in a more g'iieral sittuation than in the specular directioin. Hlowe.ver, the

basic principles are not. affected by the geonietry; it should he a rcl ati vly simnpile

matter to extend the model beyond the presented specular scenario.

As a final point., it would be dcsitable to have the imodel rebuilt on a1 more miioomis

basis, using, say, the mnome ilts of Ax or eveni fimliing a function for it.. It. should then

be possible to exactly prtdict the angular position of every feature iin the correlation

and intensity plots, and maybe even gain some idea of their relat-ike contrasts.

0
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